
Simulink® Coverage™
Reference

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coverage™ Reference
© COPYRIGHT 2017–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 4.0 (Release 2017b)
March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release R2019a)
September 2019 Online only Revised for Version 4.4 (Release R2019b)
March 2020 Online only Revised for Version 5.0 (Release R2020a)
September 2020 Online only Revised for Version 5.1 (Release R2020b)
March 2021 Online only Revised for Version 5.2 (Release R2021a)
September 2021 Online only Revised for Version 5.3 (Release R2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Simulink Coverage Settings
2

Coverage Settings . 2-2
Basic Coverage Settings . 2-2
Advanced Coverage Settings . 2-14

Classes
3

iii

Contents

Functions

1

allNames
Class: cv.cvdatagroup
Package: cv

Get names of all models associated with cvdata objects in cv.cvdatagroup

Syntax
models = allNames(cvdg)
models = allNames(cvdg, simMode)

Description
Get names of all models associated with cvdata objects in cv.cvdatagroup.

models = allNames(cvdg) returns a cell array of character vectors or strings identifying all
model names associated with the cvdata objects in cvdg, an instantiation of the cv.cvdatagroup
class.

models = allNames(cvdg, simMode) returns a cell array of character vectors or strings
identifying all model names having the simulation mode simMode associated with the cvdata objects
in cvdg, an instantiation of the cv.cvdatagroup class.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

simMode — Simulation mode
character vector or string

Simulation mode associated with the cvdata objects in cvdg. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

1 Functions

1-2

Output Arguments
models — Model names
cell array of character vectors or strings

All model names associated with the cvdata objects in cvdg.

Examples
Add three cvdata objects to cvdg and return a cell array of model names:

a = cvdata;
b = cvdata;
c = cvdata;
cvdg = cv.cvdatagroup;
add (cvdg, a, b, c);
model_names = allNames(cvdg);
model_names_sim_mode = allnames(cvdg, 'ModelRefSIL')

 allNames

1-3

complexityinfo
Retrieve cyclomatic complexity coverage information from cvdata object

Syntax
complexity = complexityinfo(cvdo,modelObject)
complexity = complexityinfo(cvdo,modelObject,simMode)

Description
complexity = complexityinfo(cvdo,modelObject) returns complexity coverage results from
the cvdata object cvdo for the model component modelObject.

complexity = complexityinfo(cvdo,modelObject,simMode) returns complexity coverage
results from the cvdata object cvdo for the model component modelObject for the simulation
mode simMode.

Examples

Retrieve Cyclomatic Complexity Data from Coverage Object

This example shows how to retrieve cyclomatic complexity information for the Gain subsystem of the
slvnvdemo_cv_small_controller model.

Load the slvnvdemo_cv_small_controller model.

modelName = 'slvnvdemo_cv_small_controller';
load_system(modelName);

Create a test specification object and enable decision, condition, and MCDC coverage. Then, simulate
the model using cvsim.

testObj = cvtest(modelName);
testObj.settings.decision = 1;
testObj.settings.condition = 1;
testObj.settings.mcdc = 1;
covData = cvsim(testObj);

Retrieve cyclomatic complexity information for the Gain subsystem.

gainPath = [modelName,'/Gain'];
gainComplexity = complexityinfo(covData,gainPath)

gainComplexity =

 1 0

The Gain subsystem itself does not record cyclomatic complexity, but the contents of the subsystem
do. This can be seen in the results because the total complexity is 1, which includes the subsystem

1 Functions

1-4

and all of its descendants. In contrast, the local complexity is 0, indicating that the one point of
complexity comes from one of the descendants, in this case a Switch block.

switchPath = [modelName,'/Gain/Switch'];
switchComplexity = complexityinfo(covData,switchPath)

switchComplexity =

 1 1

Input Arguments
cvdo — Coverage data
cvdata object

Coverage data, specified as a cvdata object.
Data Types: cvdata

modelObject — Model object
character array | string array | Simulink® handle | Stateflow® ID | cell array

Model object, specified as a character array, string array, Simulink handle, Stateflow ID, or cell array.

To specify a model object, for example a block or a Stateflow chart, use one of the following formats:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or subchart
and a Stateflow object API handle contained in that
chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

To specify an S-Function block or its contents, use one of the following formats:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block and the

name of a source file

 complexityinfo

1-5

Object Specification Description
{BlockHandle, fName} Cell array with an S-Function block handle and the

name of a source file
{BlockPath, fName, funName} Cell array with the path to an S-Function block, the

name of a source file, and a function name
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the name of

a source file an a function name

To specify a code coverage result, for example coverage data collected during software-in-the-loop
(SIL) or processor-in-the-loop (PIL) analysis, use one of the following formats:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a function

name
{Model, fileName} Cell array with a model name or model handle and the

name of a source file
{Model, fileName, funName} Cell array with a model name or model handle, the

name of a source file, and a function name

Data Types: char | string | cell | Stateflow.State | Stateflow.Transition

simMode — Simulation mode
character array | string array

Simulation mode during coverage analysis, specified as one of the following:

Object Specification Description
'Normal' Model in normal simulation mode.
'SIL' (or 'PIL') Model in software-in-the-loop (SIL) or processor-in-the-

loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in software-in-the-loop (SIL) or

processor-in-the-loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation mode with the
code interface set to top model.

Data Types: char | string

Output Arguments
complexity — Cyclomatic complexity
scalar

Cyclomatic complexity, returned as a two-element array of the form
[total_complexity,local_complexity] if cvdo contains cyclomatic complexity coverage
results, or an empty array if it does not.

1 Functions

1-6

total_complexity Cyclomatic complexity coverage for modelObject and its
descendants (if any)

local_complexity Cyclomatic complexity coverage for modelObject

If modelObject has variable-size signals, complexity also contains the variable complexity.
Data Types: double

Alternatives
Use the coverage settings to collect and display cyclomatic complexity coverage results in the
coverage report:

1 Open the model.
2 In the Simulink Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select MCDC as the structural coverage level.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model.
7 In the docked Coverage Details pane, the coverage report shows the cyclomatic complexity for

the model as well as each model object.

See Also
conditioninfo | decisioninfo | cvsim | getCoverageInfo | mcdcinfo | sigrangeinfo |
sigsizeinfo | tableinfo | executioninfo | relationalboundaryinfo |
overflowsaturationinfo

Topics
“Cyclomatic Complexity”

Introduced in R2011a

 complexityinfo

1-7

conditioninfo
Retrieve condition coverage information from cvdata object

Syntax
covInfo = conditioninfo(cvdo,modelObject)
covInfo = conditioninfo(cvdo,modelObject,simMode)
covInfo = conditioninfo(cvdo,modelObject,ignore_descendants)
[covInfo,description] = conditioninfo(cvdo,modelObject)

Description
covInfo = conditioninfo(cvdo,modelObject) returns the condition coverage results from the
cvdata object cvdo for the model component specified by modelObject.

covInfo = conditioninfo(cvdo,modelObject,simMode) returns the condition coverage
results from the cvdata object cvdo for the simulation mode simMode.

covInfo = conditioninfo(cvdo,modelObject,ignore_descendants) returns the condition
coverage results for modelObject, including or ignoring descendant objects based on the value of
ignore_descendants.

[covInfo,description] = conditioninfo(cvdo,modelObject) returns the condition
coverage results and textual descriptions for each condition in modelObject.

Examples

View Condition Coverage Data

This example shows how to view condition coverage for a block in your model.

Load the model.

modelName = 'slvnvdemo_cv_small_controller';
load_system(modelName);

Configure the coverage settings for the model by using a Simulink.SimulationInput object.

simIn = Simulink.SimulationInput(modelName);
simIn = simIn.setModelParameter('CovEnable','on');
simIn = simIn.setModelParameter('CovMetricStructuralLevel','MCDC');
simIn = simIn.setModelParameter('CovSaveSingleToWorkspaceVar','on');
simIn = simIn.setModelParameter('CovSaveName','covData');

Simulate the model by passing simIn as the input to sim.

simOut = sim(simIn);
covData = simOut.covData;

View the condition coverage results for the Logic block in the Gain subsystem by calling
conditioninfo with the block path.

1 Functions

1-8

condCov = conditioninfo(covData,[modelName,'/Gain/Logic'])

condCov =

 2 4

conditioninfo returns an array with two scalars. The first value is the number of satisfied
condition outcomes, and the second value is the number of total condition outcomes. Use these to
determine the percentage of satisfied condition outcomes for the Logic block.

percentCondCov = 100 * condCov(1) / condCov(2)

percentCondCov =

 50

Input Arguments
cvdo — Coverage data
cvdata object

Coverage data, specified as a cvdata object.
Data Types: cvdata

modelObject — Model object
character array | string array | Simulink handle | Stateflow ID | cell array

Model object, specified as a character array, string array, Simulink handle, Stateflow ID, or cell array.

To specify a model object, for example a block or a Stateflow chart, use one of the following formats:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or subchart
and a Stateflow object API handle contained in that
chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

 conditioninfo

1-9

To specify an S-Function block or its contents, use one of the following formats:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block and the

name of a source file
{BlockHandle, fName} Cell array with an S-Function block handle and the

name of a source file
{BlockPath, fName, funName} Cell array with the path to an S-Function block, the

name of a source file, and a function name
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the name of

a source file an a function name

To specify a code coverage result, for example coverage data collected during software-in-the-loop
(SIL) or processor-in-the-loop (PIL) analysis, use one of the following formats:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a function

name
{Model, fileName} Cell array with a model name or model handle and the

name of a source file
{Model, fileName, funName} Cell array with a model name or model handle, the

name of a source file, and a function name

Data Types: char | string | cell | Stateflow.State | Stateflow.Transition

simMode — Simulation mode
character array | string array

Simulation mode during coverage analysis, specified as one of the following:

Object Specification Description
'Normal' Model in normal simulation mode.
'SIL' (or 'PIL') Model in software-in-the-loop (SIL) or processor-in-the-

loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in software-in-the-loop (SIL) or

processor-in-the-loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation mode with the
code interface set to top model.

Data Types: char | string

ignore_descendants — Whether to ignore descendants in coverage results
0 (default) | 1

Whether to ignore descendants in coverage results, specified as 0 or 1, where:

• 0 includes coverage results of descendant objects.
• 1 ignores coverage results of descendant objects.

1 Functions

1-10

Data Types: single | double

Output Arguments
covInfo — Coverage information
scalar

Coverage information, returned as a two-element array of the form
[covered_outcomes,total_outcomes] if cvdo contains condition coverage data, or an empty
array if it does not.

covered_outcomes Number of condition outcomes satisfied for
modelObject

total_outcomes Total number of condition outcomes for
modelObject

Data Types: double

description — Condition coverage description
structure

Condition coverage description, returned as a structure with the following fields:

isFiltered — Block exclusion flag
0 | 1

Block exclusion flag, returned as 1 if the block is excluded and 0 if it is not.
Data Types:

filterRationale — Block coverage filter rationale
character array

Block coverage filter rationale, returned as a character array.
Data Types: char

justifiedCoverage — Number of justified coverage objective outcomes
scalar

Number of justified coverage objective outcomes, returned as a scalar double.
Data Types: double

isJustified — Block justification flag
0 | 1

Block justification flag, returned as 1 if the block is justified or 0 if it is not.
Data Types: double

condition — Information for individual condition outcomes
structure

Information for individual condition outcomes, returned as a structure array with the following fields:

 conditioninfo

1-11

isFiltered — Condition exclusion flag
0 | 1

Condition exclusion flag, returned as 1 if the condition is excluded or 0 if it is not.
Data Types: double

isJustified — Condition justification flag
0 | 1

Condition justification flag, returned as 1 if the condition is justified or 0 if it is not.
Data Types: double

filterRationale — Coverage filter rationale
character array

Coverage filter rationale, returned as a character array.
Data Types: char

text — Description of condition
character array

Description of the condition, returned as a character array.
Data Types: char

trueCnts — Number of time steps condition is true
scalar

Number of time steps the condition is true, returned as a scalar.
Data Types: double

falseCnts — Number of time steps condition is false
scalar

Number of time steps the condition is false, returned as a scalar.
Data Types: double

trueOutcomeFilter — Coverage filter information for true condition outcome
structure array

Coverage filter information for the true condition outcome, returned as a structure array with the
following fields:

isFiltered Filter flag for the condition outcome, returned as
1 if the outcome is filtered or 0 if it is not.

isJustified Justification flag for the condition outcome,
returned as 1 if the outcome is justified or 0 if it
is not.

filterRationale The filter rationale, returned as a character array.

Data Types: struct

1 Functions

1-12

falseOutcomeFilter — Coverage filter information for false condition outcome
structure array

Coverage filter information for the false condition outcome, returned as a structure array with the
following fields:

isFiltered Filter flag for the condition outcome, returned as
1 if the outcome is filtered or 0 if it is not.

isJustified Justification flag for the condition outcome,
returned as 1 if the outcome is justified or 0 if it
is not.

filterRationale The filter rationale, returned as a character array.

Data Types: struct

trueExecutedIn — Aggregated coverage test case traceability information
structure array | []

Aggregated coverage test case traceability information, returned as a structure array. If your
coverage data does not contain aggregated results from multiple simulations, trueExecutedIn is an
empty array. If your coverage data contains aggregated results, trueExecutedIn indicates which
test runs executed the true condition outcome and has the following fields:

uniqueId Unique identifier for the cvdata object created
by the test case that executed this condition
outcome, returned as a character array.

analyzedModel The name of the model analyzed, returned as a
character array.

description The test case description, returned as a character
array.

date The date and time of the simulation that created
the cvdata object, returned as a character array.

traceLabel The short name of the test case, returned as a
character array.

testRunInfo Test details, returned as a structure array.
testRunInfo.runid The identifier of the run that generated the

coverage result, returned as a scalar double.
testRunInfo.runName The name of the test case that generated the

coverage result, returned as a character array.
testRunInfo.testId Identifying data for the test case that generated

the coverage result, returned as a structure
array.

testRunInfo.testId.uuid The unique identifier for the test case that
generated the coverage result, returned as a
character array.

 conditioninfo

1-13

testRunInfo.testId.contextType The test context in which the coverage result was
obtained, returned as one of these values:

'RE' for the Coverage Results Explorer

'ST' for the Simulink Test™ Manager

Data Types: struct

falseExecutedIn — Aggregated coverage test case traceability information
structure array | []

Aggregated coverage test case traceability information, returned as a structure array. If your
coverage data does not contain aggregated results from multiple simulations, falseExecutedIn is
an empty array. If your coverage data contains aggregated results, falseExecutedIn indicates
which test runs executed the false condition outcome and has the following fields:

uniqueId Unique identifier for the cvdata object created
by the test case that executed this condition
outcome, returned as a character array.

analyzedModel The name of the model analyzed, returned as a
character array.

description The test case description, returned as a character
array.

date The date and time of the simulation that created
the cvdata object, returned as a character array.

traceLabel The short name of the test case, returned as a
character array.

testRunInfo Test details, returned as a structure array.
testRunInfo.runid The identifier of the run that generated the

coverage result, returned as a scalar double.
testRunInfo.runName The name of the test case that generated the

coverage result, returned as a character array.
testRunInfo.testId Identifying data for the test case that generated

the coverage result, returned as a structure
array.

testRunInfo.testId.uuid The unique identifier for the test case that
generated the coverage result, returned as a
character array.

testRunInfo.testId.contextType The test context in which the coverage result was
obtained, returned as one of these values:

'RE' for the Coverage Results Explorer

'ST' for the Simulink Test Manager

Data Types: struct

Data Types: struct

1 Functions

1-14

Data Types: struct

Alternatives
You can also collect condition coverage for a model in the Simulink Editor. Set the model
configuration parameters and run the model:

1 Open the model for which you want to collect condition coverage.
2 In the Simulink Editor, in the Modeling tab, select Model Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select Condition Decision as the structural coverage level.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model by clicking Run. Review the results.

See Also
complexityinfo | cvsim | decisioninfo | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo | executioninfo |
relationalboundaryinfo

Topics
“Condition Coverage (CC)”

Introduced in R2006b

 conditioninfo

1-15

cv.cvdatagroup class
Package: cv

Collection of cvdata objects

Description
Instances of this class contain a collection of cvdata objects. Each cvdata object contains coverage
results for a particular model in the model hierarchy.

Construction
cv.cvdatagroup Create collection of cvdata objects for model reference hierarchy

Methods
allNames Get names of all models associated with cvdata objects in cv.cvdatagroup
allSimulationModes Get names of all simulation modes associated with cvdata objects in

cv.cvdatagroup
get Get cvdata object
getAll Get all cvdata objects

Properties
name cv.cvdatagroup object name

Copy Semantics
Handle. To learn how this affects your use of the class, see Copying Objects in the MATLAB®

Programming Fundamentals documentation.

1 Functions

1-16

cv.cvdatagroup
Class: cv.cvdatagroup
Package: cv

Create collection of cvdata objects for model reference hierarchy

Syntax
cvdg = cv.cvdatagroup(cvdo1, cvdo2,...)

Description
cvdg = cv.cvdatagroup(cvdo1, cvdo2,...) creates a cv.cvdatagroup object that contains
the specified cvdata objects. A cvdata object contains coverage results of one or more simulations
where coverage is enabled.

Examples

Create a cv.cvdatagroup Object

This example shows how to create a cvdatagroup object using two cvdata objects.

Record coverage for slvnvdemo_cv_small_controller.

model_1 = 'slvnvdemo_cv_small_controller';
load_system(model_1)
cvdo1 = cvsim(model_1);

Record coverage for slvnvdemo_powerwindow_controller.

model_2 = 'slvnvdemo_powerwindow_controller';
load_system(model_2)
cvdo2 = cvsim(model_2);

Add the two cvdata objects to a cv.cvdatagroup object.

cvdg = cv.cvdatagroup(cvdo1,cvdo2);

 cv.cvdatagroup

1-17

allSimulationModes
Class: cv.cvdatagroup
Package: cv

Get names of all simulation modes associated with cvdata objects in cv.cvdatagroup

Syntax
simModes= allSimulationModes(cvdg)
simModes= allSimulationModes(cvdg, modelName)

Description
Get names of all simulation modes associated with cvdata objects in cv.cvdatagroup.

simModes= allSimulationModes(cvdg) returns a cell array of character vectors or strings
identifying all simulation modes associated with the cvdata objects in cvdg, an instantiation of the
cv.cvdatagroup class.

simModes= allSimulationModes(cvdg, modelName) returns a cell array of character vectors
or strings identifying all simulation modes associated with the model modelNamein cvdg, an
instantiation of the cv.cvdatagroup class.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

modelName — Name of the model
character vector or string

Model with which simulation modes are associated.

Output Arguments
simModes — Simulation modes
cell array of character vectors or strings

All simulation modes associated with cvdg. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.

1 Functions

1-18

Object Specification Description
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

Examples

Get All Simulation Modes from cvdatagroup

This example shows how to query the simulation modes of the coverage results inside a
cvdatagroup object.

Record coverage for slvnvdemo_cv_small_controller.

model_1 = 'slvnvdemo_cv_small_controller';
load_system(model_1)
cvdo1 = cvsim(model_1);

Record coverage for slvnvdemo_powerwindow_controller.

model_2 = 'slvnvdemo_powerwindow_controller';
load_system(model_2)
cvdo2 = cvsim(model_2);

Record coverage for slvnvdemo_counter.

model_3 = 'slvnvdemo_counter';
load_system(model_3)
cvdo3 = cvsim(model_3);

Add the three cvdata objects to a cv.cvdatagroup object.

cvdg = cv.cvdatagroup(cvdo1,cvdo2,cvdo3);

Get the simulation modes by using allSimulationModes.

simModes = allSimulationModes(cvdg)

simModes =

 1x1 cell array

 {'Normal'}

 allSimulationModes

1-19

cvexit
Exit model coverage environment

Syntax
cvexit

Description
cvexit exits the model coverage environment. Issuing this command closes the Coverage Display
window and removes coloring from a block diagram that displays its model coverage results.

Introduced in R2006b

1 Functions

1-20

cvhtml
Produce HTML report from model coverage objects

Syntax
cvhtml(file,cvdo)
cvhtml(file,cvdo1,...,cvdoN)
cvhtml(file,cvdo1,...,cvdoN,options)
cvhtml(file,cvdo,simMode)

Description
cvhtml(file,cvdo) creates an HTML report of the coverage results in the cvdata or
cv.cvdatagroup object cvdo when you run model coverage in simulation. cvhtml saves the
coverage results in file. The model must be open when you use cvhtml to generate its coverage
report.

cvhtml(file,cvdo1,...,cvdoN) creates a combined report of several cvdata objects. The
results from each object appear in a separate column of the HTML report. Each cvdata object must
correspond to the same root model or subsystem. Otherwise, the function fails.

cvhtml(file,cvdo1,...,cvdoN,options) creates a combined report of several cvdata objects
using the report options specified by options.

cvhtml(file,cvdo,simMode) creates an HTML report for the models having the simulation mode
simMode.

Examples

Create a Coverage Report

Make sure you have write access to the default MATLAB folder. Create a cumulative coverage report
for the slvnvdemo_cv_small_controller mode and save it as ratelim_coverage.html:

model = 'slvnvdemo_cv_small_controller';
open_system(model);
cvt = cvtest(model);
cvd = cvsim(cvt);
outfile = 'ratelim_coverage.html';
cvhtml(outfile, cvd);

Input Arguments
cvdo — Coverage data
object

Coverage data, specified as a cvdata object or cv.cvdatagroup object.

 cvhtml

1-21

file — HTML file name
character array | string array

HTML file name, specified as a character or string array. You can specify the absolute path or relative
path and the HTML file where cvhtml stores the report.

options — Report options
character array | string array

Reporting options, specified as a character or string array.

• To enable an option, set it to 1 (e.g., '-hTR=1').
• To disable an option, set it to 0 (e.g., '-bRG=0').
• To specify multiple report options, list individual options in a single options character vector or

string separated by commas or spaces (e.g., '-hTR=1 -bRG=0 -scm=0').

Option Description Default
-sRT Show report on
-sVT Web view mode off
-aTS Include each test in the model summary on
-bRG Produce bar graphs in the model summary on
-bTC Use two color bar graphs (red, blue) on
-hTR Display hit/count ratio in the model summary off
-xEM Exclude execution metric details from report off
-nFC Exclude fully covered model objects from report off
-nFD Exclude fully covered model object details from report on
-scm Include cyclomatic complexity numbers in summary on
-bcm Include cyclomatic complexity numbers in block details on
-xEv Filter Stateflow events from report off

simMode — Simulation mode
character array | string array

Simulation mode, specified as a character or string array. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

1 Functions

1-22

Alternatives
Use the coverage settings to create a model coverage report in an HTML file:

1 Open the model for which you want a model coverage report.
2 In the Simulink Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Click OK to close the Configuration Parameters dialog box and save your changes.
5 Simulate the model by clicking the Run button and review the generated report.

See Also
cv.cvdatagroup | cvmodelview | cvsim

Topics
“Automating Model Coverage Tasks”

Introduced before R2006a

 cvhtml

1-23

cvload
Load coverage tests and stored results into memory

Syntax
[covSettings,covData] = cvload(fileName)
[covSettings,covData] = cvload(fileName,restoreTotal)

Description
[covSettings,covData] = cvload(fileName) loads the tests and data stored in the specified
file.

[covSettings,covData] = cvload(fileName,restoreTotal) restores or clears the
cumulative results from prior runs depending on the value of restoreTotal.

Note When using the cvload command:

• If a model with the same name exists in the coverage database, cvload only loads the compatible
results that reference the existing model to prevent duplication.

• If the Simulink models referenced from the file are open, but do not exist in the coverage
database, cvload resolves the links to the existing models.

• When you are loading several files that reference the same model, cvload only loads the results
that are consistent with the earlier files.

• Starting in R2020b, you can load coverage data created in R2017b or later. You can aggregate
coverage data from two or more cvdata objects for the same model if the dbVersion properties
match.

Examples

Load Coverage Data and Preserve Cumulative Data

Load the file myCovData.cvt while maintaining cumulative coverage results.

[covSettings,covData] = cvload('myCovData',1);

Input Arguments
fileName — Name of coverage data file
character array | string array

Name of coverage data file, specified as a character array or string array. fileName must be a
coverage data file with the .cvt extension. You do not need to include the extension in fileName.
Example: 'myCoverageData'

1 Functions

1-24

Data Types: char | string

restoreTotal — Cumulative data restoration setting
0 (default) | 1

Cumulative data restoration setting, specified as 1 or 0. If restoreTotal is set to 1, cvload
restores the cumulative results from prior runs. If restoreTotal is set to 0 or unspecified, cvload
clears the cumulative results.
Data Types: double

Output Arguments
covSettings — Coverage settings
cell array

Coverage settings, returned as a cell array of cvtest objects. The coverage settings are returned as
cvtest objects even if you did not use cvtest and cvsim to collect the original data.
Data Types: cell

covData — Coverage data
cell array

Coverage data, returned as a cell array of cvdata objects. covData has the same size as
covSettings, but if a settings entry has no results, covData can contain empty elements.

Alternatives
You can load existing coverage data in the Coverage Results window:

1 Open the model for which you want to load existing coverage data.
2 In the Apps tab, select Coverage Analyzer.
3 In the Coverage tab, select Results Explorer.
4 In the Coverage Results window, right click Data Repository and select Load coverage data.
5 Select the coverage data file that you want to load.

See Also
cvdata | cvsave | cvtest

Topics
“Programmatically Retrieve Coverage Details from Results”

Introduced before R2006a

 cvload

1-25

cvmodelview
Display model coverage results with model coloring

Syntax
cvmodelview(cvdo)
cvmodelview(cvdo, simMode)

Description
cvmodelview(cvdo) displays coverage results from the cvdata object cvdo by coloring the objects
in the model that have model coverage results.

cvmodelview(cvdo, simMode) displays coverage results from the cvdata object cvdo by coloring
the objects in the model that have model coverage results for the specified simulation mode.

Input Arguments
cvdo — Coverage data
object

Coverage data, specified as a cvdata object or cv.cvdatagroup object.

simMode — Simulation mode
character array | string array

Simulation mode, specified as a character or string array. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

Examples
Open the slvnvdemo_cv_small_controller example model, create the test specification object
testObj, and execute testObj to collect model coverage. Run cvmodelview to color the model
objects for which you collect model coverage information:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)

1 Functions

1-26

data = cvsim(testObj)
cvmodelview(data)

Alternatives
Use the coverage settings to display model coverage results by coloring objects:

1 Open the model.
2 Select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Click OK to close the Configuration Parameters dialog box and save your changes.
5 Simulate the model by clicking the Run button and review the results.

See Also
cvhtml | cvsim

Topics
“View Coverage Results in Simulink Canvas”

Introduced in R2006b

 cvmodelview

1-27

cvresults
Returns active coverage data, clears and loads active coverage data from a file

Syntax
[CVDATA, CVCUMDATA] = cvresults(MODELNAME)
cvresults(MODELNAME, 'clear')
cvresults(MODELNAME, 'load', filename)

Description
[CVDATA, CVCUMDATA] = cvresults(MODELNAME) returns the active single-run coverage data
CVDATA and cumulative coverage data CVCUMDATA.

cvresults(MODELNAME, 'clear') clears the active coverage data.

cvresults(MODELNAME, 'load', filename) loads the active coverage data from a .cvt file.

See Also

Introduced in R2016a

1 Functions

1-28

cvsave
Save coverage settings and results to file

Syntax
cvsave(fileName,model)
cvsave(fileName,covData)
cvsave(fileName,covSettings1,...,covSettingsN)

Description
cvsave(fileName,model) saves all the coverage settings and results related to model in the file
fileName.

cvsave(fileName,covData) saves all the coverage settings and results contained in the cvdata
object covData.

cvsave(fileName,covSettings1,...,covSettingsN) saves multiple cvtest objects and
information about any referenced models.

Examples

Save Coverage Results

This example shows how to save coverage data to a file.

Start by loading the model into memory.

modelName = 'slvnvdemo_cv_small_controller';
load_system(modelName);

Simulate the model with the coverage settings that are saved with the model.

covData = cvsim(modelName);

Save a coverage data file called coverage_data, containing the coverage data in the cvdata object
covData.

cvsave('coverage_data',covData);

Save Multiple Coverage Data Objects to a File

This example shows how to save more than one coverage data object to a single coverage data file.

Load the Model

Load the model into memory.

 cvsave

1-29

modelName = 'slvnvdemo_ratelim_harness';
load_system(modelName);

Set Model Parameters for Coverage

Create a Simulink.SimulationInput object to set coverage parameters.

covSet = Simulink.SimulationInput(modelName);
covSet = covSet.setModelParameter('CovEnable','on');
covSet = covSet.setModelParameter('CovMetricStructuralLevel','MCDC');
covSet = covSet.setModelParameter('CovScope','Subsystem');
covSet = covSet.setModelParameter('CovPath','/Adjustable Rate Limiter');
covSet = covSet.setModelParameter('CovSaveSingleToWorkspaceVar','on');

Simulate the Model to Collect Coverage Data

Load the data files and then simulate the model to collect two sets of coverage data.

load within_lim.mat
covSet = covSet.setModelParameter('CovSaveName','covData1');
simOut1 = sim(covSet);

Simulate the model a second time using the second data file.

load rising_gain.mat
covSet = covSet.setModelParameter('CovSaveName','covData2');
simOut2 = sim(covSet);

Save the Coverage Data to a File

Save the results in a cell array.

cov_results{1} = covData1;
cov_results{2} = covData2

cov_results =

 1x2 cell array

 {1x1 cvdata} {1x1 cvdata}

Save the results to a file.

cvsave('ratelim_testdata',cov_results{:});

Input Arguments
fileName — Name of coverage data file
character array | string array

Name of coverage data file, specified as a character array or a string array. cvsave appends the
extension .cvt to the name of the file when saving it.
Example: 'myCoverageDataFile'
Data Types: char | string

1 Functions

1-30

model — Simulink model that has coverage data
character array | string array

Simulink model that has coverage data, specified as a character array or a string array. model can be
the name of a model or a handle to a model.
Example: 'mySimulinkModel'
Data Types: char | string

covSettings — Coverage settings
cvtest object | cell array

Coverage settings, specified as a cvtest object, or a cell array of cvtest objects.
Data Types: cvtest | cell

covData — Coverage data
cvdata object | cell array

Coverage data, specified as a cvdata object or a cell array of cvdata objects.
Data Types: cvdata | cell

Alternatives
You can save coverage results to a MATLAB workspace variable when you run your model in
Simulink:

1 Open the model for which you want to save cumulative coverage results.
2 On the Modeling tab, select Model Settings.
3 In the left pane of the Configuration Parameters dialog box, select Coverage.
4 Select Enable coverage analysis.
5 In the Results section, select Save last run in workspace variable.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model by clicking the Run button and review the results.

See Also
cvload | cvdata | cv.cvdatagroup | cvtest

Introduced before R2006a

 cvsave

1-31

cvsim
Simulate and return model coverage results for test objects

Syntax
cvdo = cvsim(modelName)
cvdo = cvsim(testObj)
[cvdo,simOut] = cvsim(__,Name,Value)
[cvdo,simOut] = cvsim(testObj,paramStruct)
[cvdo1,...,cvdoN] = cvsim(testObj1,...,testObjN)

Description
cvdo = cvsim(modelName) simulates the model and returns the coverage results in the cvdata
object, cvdo.

cvdo = cvsim(testObj) simulates the model and returns the coverage results for the cvtest
object, testObj.

[cvdo,simOut] = cvsim(__,Name,Value) specifies the model parameters, simulates the model,
and returns the coverage results in the cvdata object, cvdo, and the simulation outputs in the
Simulink.SimulationOutput object, simOut.

Note cvsim ignores model parameters listed in the Coverage pane of the Configuration Parameters
window. Create a cvtest object to set coverage options, or use sim instead.

[cvdo,simOut] = cvsim(testObj,paramStruct) sets the model parameters specified in a
structure paramStruct.

[cvdo1,...,cvdoN] = cvsim(testObj1,...,testObjN) simulates the model for N test objects,
and returns the coverage results for each object.

Note cvsim will record coverage even if coverage is not enabled in the model parameters.

Examples

Record Coverage Data Using cvsim

This example shows how to use cvsim with a cvtest object input and a structure of model
parameters.

Load the slvnvdemo_cv_small_controller example model.

modelName = 'slvnvdemo_cv_small_controller';
load_system(modelName)

Create a cvtest object and turn on decision coverage.

1 Functions

1-32

testObj = cvtest(modelName);
testObj.settings.decision = 1;

Create a structure that defines the following model parameters:

• Set the absolute tolerance, AbsTol, to 1e-5.
• Enable the simulation to save states to the workspace with SaveState.
• Declare the variable name to save the state information in with SaveStateName.
• Enable Simulink® to save simulation output data to the workspace with SaveOutput.
• Declare the variable name in which to store the simulation output data with OutputSaveName.

paramStruct.AbsTol = '1e-5';
paramStruct.SaveState = 'on';
paramStruct.StateSaveName = 'xoutNew';
paramStruct.SaveOutput = 'on';
paramStruct.OutputSaveName = 'youtNew';

Simulate the model with cvsim and generate a coverage report with cvhtml.

[covData,simOut] = cvsim(testObj,paramStruct);
cvhtml('CoverageReport.html',covData,'-sRT=0');

Input Arguments
modelName — Name of Simulink model
character array | string array

Name of a Simulink Model, specified as a character array or string array. cvsim simulates the model
with the current coverage settings.
Data Types: char | string

testObj — Coverage test settings
cvtest object

Coverage test settings, specified as a cvtest object. cvsim collects coverage using the settings
specified in testObj.
Data Types: cvtest

paramStruct — Model parameters
structure

Model parameters, specified as a structure. You can specify model parameters as a structure and use
the structure instead of name-value pair arguments to set multiple parameters.

paramStruct fields are the names of model parameters and the values are the corresponding
parameter values.
Example: paramStruct.AbsTol = '1e-5';
Data Types: struct

 cvsim

1-33

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [cvdo,simOut] = cvsim(testObj,'AbsTol','1e-5'); specifies that the model is
simulated using an absolute tolerance of 1e-5 with coverage settings specified in testObj.

cvsim supports all model parameters that are supported by sim, except for parameters in the
Coverage pane of the Configuration Parameters window.

ModelParameter — Model parameter and value
character array | string array

Name of a model parameter, specified as a character array or string array. The value of the parameter
is specified as the next argument.
Data Types: char | string

Output Arguments
cvdo — Coverage data object
cvdata

cvdo, returned as a cvdata object. When recording coverage for multiple models in a hierarchy,
cvdo is a cv.cvdatagroup object instead. cvdo contains the coverage data from the simulated
system.

See cvdata for the object structure.

simOut — Simulation data object
Simulink.SimulationOutput

simOut, returned as a Simulink.SimulationOutput object.

See Also
cvtest | cvdata | cv.cvdatagroup | sim | cvhtml

Introduced before R2006a

1 Functions

1-34

cvtest
Create model coverage test specification object

Description
Use cvtest to create a test specification object that stores model coverage settings. Pass the
cvtest object to the cvsim function to execute coverage analysis based on your settings.

Creation

Syntax
cvto = cvtest(root)
cvto = cvtest(root,label)
cvto = cvtest(root,label,setupCmd)

Description

cvto = cvtest(root) creates a cvtest object with default coverage settings. root can be the
name of a model or the handle to a model. root can also be the name or handle to a subsystem
within the model, in which case only the specified subsystem and its descendents are analyzed for
coverage.

cvto = cvtest(root,label) creates a cvtest object with the designated label.

cvto = cvtest(root,label,setupCmd) creates a cvtest object with the setup command
setupCmd. The setup command is executed in the base MATLAB workspace before running coverage
analysis.

Input Arguments

root — Name or handle of model or path to subsystem
character array | string array

Model name or handle, or path to a subsystem, specified as a character array or string array.

Properties
id — Internal Model ID
scalar

This property is read-only.

Internal model ID, returned as a scalar.

modelcov — Internal Coverage Configuration ID
scalar

 cvtest

1-35

This property is read-only.

Internal coverage configuration ID, returned as a scalar.

rootPath — Name or handle of system to analyze
character array | string array

This property is read-only.

Name of the system you specified to analyze, returned as a character array or string array.
Data Types: char | string

label — Test label
character array | string array

Test label, specified as a character array or a string array. This label appears in the coverage report
as the test name.
Data Types: char | string

setupCmd — Command executed in base MATLAB workspace before simulation
character array | string array

Command executed in base MATLAB workspace before simulation, specified as a character array or
string array.

The setup command is executed before each simulation.
Data Types: char | string

settings — Coverage settings
structure

Types of coverage to collect, specified as a structure.

settings includes the following fields:

Property Description Values
settings.decision Enable decision coverage data. 1 (default) | 0
settings.condition Enable condition coverage data. 1 | 0 (default)
settings.mcdc Enable modified condition

decision coverage (MCDC) data.

If settings.mcdc is enabled,
you can also choose which
definition of MCDC to use with
the options.mcdcmode
property.

1 | 0 (default)

settings.designverifier Enable coverage data from
Simulink Design Verifier™
blocks.

1 | 0 (default)

1 Functions

1-36

Property Description Values
settings.tableExec Enable coverage data for lookup

tables.
1 | 0 (default)

settings.sigrange Enable signal range data. 1 | 0 (default)
settings.sigsize Enable signal size data. 1 | 0 (default)
settings.overflowsaturat
ion

Enable saturation on integer
overflow coverage data.

1 | 0 (default)

settings.relationalop Enable relational boundary
coverage data.

Use
options.covBoundaryRelTo
l and
options.covBoundaryAbsTo
l to specify tolerances for this
type of coverage.

For more information, see
“Relational Boundary Coverage”

1 | 0 (default)

options — Advanced coverage options
structure

Advanced coverage options, specified as a structure.

options includes the following fields:

Property Description Values
options.covBoundaryRelTo
l

Relative tolerance for relational
boundary coverage.

For more information, see
“Relational Boundary
Coverage”.

0.01 (default) | scalar

options.CovBoundaryAbsTo
l

Absolute tolerance for relational
boundary coverage.

For more information, see
“Relational Boundary
Coverage”.

1e-5 (default) | scalar

 cvtest

1-37

Property Description Values
options.useTimeInterval Whether to restrict model

coverage recording to a
specified simulation time
interval.

Use
options.intervalStartTim
e and
options.intervalStopTime
to specify the time interval.

For more information, see
“Specify Coverage Options”

1 | 0 (default)

options.intervalStartTim
e

When to start recording
coverage.

Specify this property if
options.useTimeInterval is
enabled.

0 (default) | scalar

options.intervalStopTime When to stop recording
coverage.

Specify this property if
options.useTimeInterval is
enabled.

0 (default) | scalar

1 Functions

1-38

Property Description Values
options.forceBlockReduct
ion

Whether to record coverage for
blocks flagged with the Block
Reduction parameter.

• 1 (default) — Override the
Simulink Block Reduction
parameter if it is enabled.
Coverage is recorded for
every supported block in the
model. The value of the
configuration parameter
Block Reduction is ignored.

• 0 — Use the value for the
configuration parameter
Block Reduction. If Block
Reduction is enabled,
coverage is not recorded for
blocks that are effectively
removed from the model
because of block reduction.
For instance, coverage is not
recorded for a block that is
reduced by dead code
elimination.

For more information, see
“Block reduction”

1 (default) | 0

options.mcdcMode Which MCDC definition to apply
to the model, specified as one of
the following options:

• 'masking' — Use the
masking definition of MCDC
coverage.

• 'unique cause' — Use the
unique cause definition of
MCDC coverage.

For more information, see
“Modified Condition and
Decision Coverage (MCDC)
Definitions in Simulink
Coverage”.

'masking' (default) |
'unique cause'

filter — Coverage filter
structure

Coverage filter, specified as a structure.

filter has one field, filter.fileName. filter.fileName is the name of a coverage filter file to
apply to coverage analysis, specified as a character array or string array.

 cvtest

1-39

For more information, see “Coverage Filter Rules and Files”

modelRefSettings — Model reference settings
structure (default)

Model reference settings, specified as a structure.

modelRefSettings includes the following fields:

Property Description Values
modelRefSettings.enable Model reference coverage

setting, specified as one of the
following options:

• 'off' — Disable coverage
for all referenced models.

• 'all' or 'on' — Enable
coverage for all supported
referenced models.

• 'filtered' — Enable
coverage for all supported
referenced models except
those listed in the
excludedModels field.

'off' (default) | 'on' |
'all' | 'filtered'

modelRefSettings.exclude
TopModel

Whether to exclude the top
model from coverage analysis,
specified as a numeric or logical
1 (true) or 0 (false).

1 (default) | 0

modelRefSettings.exclude
dModels

Referenced models to exclude
from coverage analysis,
specified as a single character
or string array of comma-
separated model names.

To use this field, set
modelRefSettings.enable
to 'filtered'.

char | string

emlSettings — Whether to collect coverage for external program files called by MATLAB
functions
structure

Whether to collect coverage for external program files called by MATLAB functions in your model,
specified as a structure.

emlSettings has one field, emlSettings.enableExternal. emlSettings.enableExternal is
whether to collect external program files called by MATLAB functions, specified as a numeric or
logical 1 (true)(default) or 0 (false).

sfcnSettings — Whether to collect coverage for C/C++ S-Function blocks
structure (default)

1 Functions

1-40

Whether to collect coverage for C/C++ S-Function blocks in your model, specified as a structure.

sfcnSettings has one field, sfcnSettings.enableSfcn. sfcnSettings.enableSfcn is
whether to collect coverage S-Function coverage, specified as a logical 1 (true)(default) or 0
(false).

For more information, see S-Function.

Examples

Create cvtest Object

In this example, you create a cvtest object for the Adjustable Rate Limiter block in the
slvnvdemo_ratelim_harness model. Simulate the model to get decision coverage and saturation
on integer overflow coverage data.

Open the slvnvdemo_ratelim_harness model and define the test object using cvtest.

open_system('slvnvdemo_ratelim_harness');
testObj = cvtest(['slvnvdemo_ratelim_harness', ...
 '/Adjustable Rate Limiter']);
testObj.label = 'Gain within slew limits';

Add a setup command to testObj. The setup command is executed in the base MATLAB workspace
before running the coverage analysis. In this case, the setup command loads data into the workspace
that is required for the simulation.

testObj.setupCmd = ...
 'load slvnvdemo_ratelim_harness_data.mat';

To collect decision coverage and saturation on integer overflow coverage, enable the decision and
overflowsaturation fields in the settings structure by setting the fields to 1.

testObj.settings.decision = 1;
testObj.settings.overflowsaturation = 1;

Finally, simulate the model with the coverage analysis by providing the cvtest object to the cvsim
function.

cvdo = cvsim(testObj);

See Also
cvsim | cv.cvdatagroup

Topics
“Automating Model Coverage Tasks”

Introduced before R2006a

 cvtest

1-41

decisioninfo
Retrieve decision coverage information from cvdata object

Syntax
covInfo = decisioninfo(cvdo, modelObject)
covInfo = decisioninfo(cvdo, modelObject, simMode)
covInfo = decisioninfo(cvdo, modelObject, ignore_descendants)
[covInfo, description] = decisioninfo(cvdo, modelObject)

Description
covInfo = decisioninfo(cvdo, modelObject) returns decision coverage results from the
cvdata object cvdo for the model component specified by modelObject.

covInfo = decisioninfo(cvdo, modelObject, simMode) returns decision coverage results
from the cvdata object cvdo for the model component specified by modelObject for the simulation
mode simMode.

covInfo = decisioninfo(cvdo, modelObject, ignore_descendants) returns decision
coverage results for modelObject, depending on the value of ignore_descendants.

[covInfo, description] = decisioninfo(cvdo, modelObject) returns decision coverage
results and text descriptions of decision points associated with modelObject.

Examples

View Decision Coverage Data

This example shows how to view decision coverage data for a block in your model.

Load the model.

modelName = 'slvnvdemo_cv_small_controller';
load_system(modelName);

Configure the coverage settings for the model by using a Simulink.SimulationInput object.

simIn = Simulink.SimulationInput(modelName);
simIn = setModelParameter(simIn,'CovEnable','on');
simIn = setModelParameter(simIn,'CovMetricStructuralLevel','Decision');
simIn = setModelParameter(simIn,'CovSaveSingleToWorkspaceVar','on');
simIn = setModelParameter(simIn,'CovSaveName','covData');

Simulate the model by passing simIn as the input to sim.

simOut = sim(simIn);
covData = simOut.covData;

View the decision coverage results for the Saturation block by calling decisioninfo with the block
path.

1 Functions

1-42

blockPath = [modelName,'/Saturation'];
decisionCov = decisioninfo(covData,blockPath)

decisionCov =

 3 4

decisioninfo returns an array with two scalars. The first value is the number of satisfied decision
outcomes, and the second value is the number of total decision outcomes. Use these to determine the
percentage of satisfied decision outcomes for the Saturation block.

percentDecisionCov = 100 * decisionCov(1) / decisionCov(2)

percentDecisionCov =

 75

Input Arguments
cvdo — Coverage data
cvdata object

Coverage data, specified as a cvdata object.
Data Types: cvdata

modelObject — Model object
character array | string array | Simulink handle | Stateflow ID | cell array

Model object, specified as a character array, string array, Simulink handle, Stateflow ID, or cell array.

To specify a model object, for example a block or a Stateflow chart, use one of the following formats:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or subchart
and a Stateflow object API handle contained in that
chart or subchart

 decisioninfo

1-43

Object Specification Description
{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

To specify an S-Function block or its contents, use one of the following formats:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block and the

name of a source file
{BlockHandle, fName} Cell array with an S-Function block handle and the

name of a source file
{BlockPath, fName, funName} Cell array with the path to an S-Function block, the

name of a source file, and a function name
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the name of

a source file an a function name

To specify a code coverage result, for example coverage data collected during software-in-the-loop
(SIL) or processor-in-the-loop (PIL) analysis, use one of the following formats:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a function

name
{Model, fileName} Cell array with a model name or model handle and the

name of a source file
{Model, fileName, funName} Cell array with a model name or model handle, the

name of a source file, and a function name

Data Types: char | string | cell | Stateflow.State | Stateflow.Transition

simMode — Simulation mode
character array | string array

Simulation mode during coverage analysis, specified as one of the following:

Object Specification Description
'Normal' Model in normal simulation mode.
'SIL' (or 'PIL') Model in software-in-the-loop (SIL) or processor-in-the-

loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in software-in-the-loop (SIL) or

processor-in-the-loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation mode with the
code interface set to top model.

Data Types: char | string

ignore_descendants — Whether to ignore descendants in coverage results
0 (default) | 1

1 Functions

1-44

Whether to ignore descendants in coverage results, specified as 0 or 1, where:

• 0 includes coverage results of descendant objects.
• 1 ignores coverage results of descendant objects.

Data Types: single | double

Output Arguments
covInfo — Coverage information
scalar

Coverage information, returned as a two-element array of the form
[covered_outcomes,total_outcomes] if cvdo contains decision coverage data, or an empty
array if it does not.

covered_outcomes Number of decision outcomes satisfied for
modelObject

total_outcomes Total number of decision outcomes for
modelObject

Data Types: double

description — Decision coverage description
structure

Decision coverage description, returned as a structure array with the following fields:

isFiltered — Block exclusion flag
0 | 1

Block exclusion flag, returned as 1 if the block is excluded and 0 if it is not.
Data Types:

filterRationale — Block coverage filter rationale
character array

Block coverage filter rationale, returned as a character array.
Data Types: char

justifiedCoverage — Number of justified coverage objective outcomes
scalar

Number of justified coverage objective outcomes, returned as a scalar double.
Data Types: double

isJustified — Block justification flag
0 | 1

Block justification flag, returned as 1 if the block is justified or 0 if it is not.
Data Types: double

 decisioninfo

1-45

decision — Information for individual decisions
structure array

Information for individual decisions, returned as a structure array with the following fields:

isFiltered — Decision exclusion flag
0 | 1

Decision exclusion flag, returned as 1 if the decision is excluded or 0 if it is not.
Data Types: double

isJustified — Decision justification flag
0 | 1

Decision justification flag, returned as 1 if the decision is justified or 0 if it is not.
Data Types: double

filterRationale — Coverage filter rationale
character array

Coverage filter rationale, returned as a character array.
Data Types: char

text — Description of decision
character array

Description of the decision, returned as a character array.
Data Types: char

outcome — Information for individual decision outcomes
structure

Information for individual decision outcomes, returned as a structure array with the following fields:

text Outcome of the decision, returned as 'true' or
'false'.

executionCount The number of time steps the decision had this
outcome, returned as a scalar double.

isFiltered Decision outcome exclusion flag, returned as 1 if
the outcome is excluded or 0 if it is not.

isJustified Decision outcome justification flag, returned as 1
if the outcome is justified or 0 if it is not.

filterRationale Coverage filter rationale, returned as a character
array.

1 Functions

1-46

executedIn Aggregated coverage test case traceability
information, returned as a structure array. If your
coverage data does not contain aggregated
results from multiple simulations, executedIn is
an empty array. If your coverage data contains
aggregated results, executedIn indicates which
test runs executed the decision outcome.

executedIn.uniqueId Unique identifier for the cvdata object created
by the test case that executed this condition
outcome, returned as a character array.

executedIn.analyzedModel The name of the model analyzed, returned as a
character array.

executedIn.description The test case description, returned as a character
array.

executedIn.date The date and time of the simulation that created
the cvdata object, returned as a character array.

executedIn.traceLabel The short name of the test case, returned as a
character array.

executedIn.testRunInfo Test details, returned as a structure array.
executedIn.testRunInfo.runid The identifier of the run that generated the

coverage result, returned as a scalar double.
executedIn.testRunInfo.runName The name of the test case that generated the

coverage result, returned as a character array.
executedIn.testRunInfo.testId Identifying data for the test case that generated

the coverage result, returned as a structure
array.

executedIn.testRunInfo.testId.uuid The unique identifier for the test case that
generated the coverage result, returned as a
character array.

executedIn.testRunInfo.testId.contextT
ype

The test context in which the coverage result was
obtained, returned as one of these values:

'RE' for the Coverage Results Explorer

'ST' for the Simulink Test Manager

Data Types: struct

Data Types: struct

Data Types: struct

Alternatives
Use the coverage settings to collect and display decision coverage results:

1 Open the model.
2 In the Model Editor, select Model Settings on the Modeling tab.

 decisioninfo

1-47

3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage
analysis.

4 Under Coverage metrics, select Decision as the structural coverage level.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model by clicking the Run button and review the results.

See Also
complexityinfo | conditioninfo | cvsim | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo | executioninfo |
relationalboundaryinfo

Topics
“Decision Coverage (DC)”

Introduced in R2006b

1 Functions

1-48

executioninfo
Retrieve execution coverage information from cvdata object

Syntax
coverage = executioninfo(cvdo, object)
coverage = executioninfo(cvdo, object, mode)
coverage = executioninfo(cvdo, object, ignore_descendants)
[coverage, description] = executioninfo(cvdo, object)

Description
coverage = executioninfo(cvdo, object) returns execution coverage results from the
cvdata object cvdo for the model component specified by object.

coverage = executioninfo(cvdo, object, mode) returns execution coverage results from
the cvdata object cvdo for the model component specified by object for the simulation mode mode.

coverage = executioninfo(cvdo, object, ignore_descendants) returns execution
coverage results for object, depending on the value of ignore_descendants.

[coverage, description] = executioninfo(cvdo, object) returns execution coverage
results and text descriptions of execution points associated with object.

Input Arguments
cvdo

cvdata object

object

The object argument specifies an object in the model or Stateflow chart that received execution
coverage. Valid values for object include the following:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

 executioninfo

1-49

Object Specification Description
{BlockPath, sfObj} Cell array with the path to a Stateflow chart or subchart

and a Stateflow object API handle contained in that
chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block and the

name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and the

name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block, the

name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the name of

a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-Loop (PIL)
simulation mode, valid values for object include the following:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a function

name.
{Model, fileName} Cell array with a model name (or model handle) and the

name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle), the

name of a source file, and a function name.

mode

The mode argument specifies the simulation mode for coverage. Valid values for mode include the
following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

ignore_descendants

Specifies to ignore the coverage of descendant objects if ignore_descendants is set to 1.

1 Functions

1-50

Output Arguments
coverage

The value of coverage is a two-element vector of the form [covered_outcomes
total_outcomes].coverage is empty if cvdo does not contain execution coverage results for
object. The two elements are:

covered_outcomes Number of execution outcomes satisfied for
object

total_outcomes Number of execution outcomes for object

description

description is a structure array containing the following fields:

decision.text Structure array describing block execution counts
isFiltered Whether the block is filtered
filterRationale The filtering rationale
justifiedCoverage The justified decision conditions
isJustified Whether the block is justified

Examples
Open the slvnvdemo_cv_small_controller model and create the test specification object
testObj. Enable execution coverage for slvnvdemo_cv_small_controller and execute testObj
using cvsim. Use executioninfo to retrieve the execution coverage results for the Saturation
block and determine the percentage of execution outcomes covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Saturation'], 'Handle');
cov = executioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives
Use the coverage settings to collect and display execution coverage results:

1 Open the model.
2 In the Model Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select Block Execution as the structural coverage level.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model by clicking the Run button and review the results.

 executioninfo

1-51

See Also
complexityinfo | conditioninfo | decisioninfo | cvsim | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo |
relationalboundaryinfo

Topics
“Execution Coverage (EC)”

Introduced in R2006b

1 Functions

1-52

get
Class: cv.cvdatagroup
Package: cv

Get cvdata object

Syntax
get(cvdg, model_name)
get(cvdg, model_name, simMode)

Description
Get cvdata object.

get(cvdg, model_name) returns the cvdata object in the cv.cvdatagroup object cvdg that
corresponds to the model specified in model_name.

get(cvdg, model_name, simMode) returns the cvdata object in the cv.cvdatagroup object
cvdg that corresponds to the model specified in model_name having the simulation mode simMode.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

model_name — Name of the model
character vector or string

Model to which the cvdata object in the cv.cvdatagroup object cvdg corresponds.

simMode — Simulation mode
character vector or string

Simulation mode for the cvdata object in the cv.cvdatagroup object. Valid values include the
following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

 get

1-53

Examples
Get a cvdata object from the specified Simulink model:

get(cvdg, 'slvnvdemo_cv_small_controller');
get(cvdg, 'slvnvdemo_cv_small_controller', 'ModelRefSIL');

1 Functions

1-54

getAll
Class: cv.cvdatagroup
Package: cv

Get all cvdata objects

Syntax
getAll(cvdg)
getAll(cvdg, simMode)

Description
Get all cvdata objects.

getAll(cvdg) returns all cvdata objects in the cv.cvdatagroup object cvdg.

getAll(cvdg, simMode) returns all cvdata objects in the cv.cvdatagroup object cvdg having
the simulation mode simMode.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

simMode — Simulation mode
character vector or string

Simulation mode associated with the cvdata objects in cvdg. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

Examples
Return all cvdata objects from the specified Simulink model:

 getAll

1-55

getAll(cvdg, 'slvnvdemo_cv_small_controller');
getAll(cvdg, 'slvnvdemo_cv_small_controller', 'ModelRefSIL');

1 Functions

1-56

extract
Extract subsystem coverage data from system-level coverage data

Syntax
excvd = extract(cvdo,subsystem)

Description
excvd = extract(cvdo,subsystem) extracts coverage data for subsystem from system-level
coverage data cvdo.

Examples

Create HTML Coverage Report for a Subsystem from Model Coverage Data

Record coverage data for the sf_car model.

model = 'sf_car'
openExample(model)
load_system(model)
cvdo = cvsim(model);

Extract the coverage data for the shift_logic subsystem from the coverage data from the top-level
model sf_car.

excvd = extract(cvdo,'sf_car/shift_logic');

Create a coverage report from the extracted coverage data.

cvhtml('tmp', excvd)

Input Arguments
cvdo — System-level coverage data object
object (default)

System-level coverage data object from a top-level model, specified as an object.
Data Types: object

subsystem — Subsystem in a Simulink model
character vector (default)

Full name or path of a subsystem in an open or loaded Simulink model, specified as a character
vector.
Data Types: character vector

 extract

1-57

Output Arguments
excvd — Extracted coverage data object
object

Coverage data object for a subsystem extracted from a Simulink model, returned as an object.

See Also
cv.cvdatagroup | cvhtml | cvsim

Topics
“Automating Model Coverage Tasks”

Introduced in R2019b

1 Functions

1-58

getCoverageInfo
Retrieve coverage information for Simulink Design Verifier blocks from cvdata object

Syntax
[coverage, description] = getCoverageInfo(cvdo, object)
[coverage, description] = getCoverageInfo(cvdo, object, metric)
[coverage, description] = getCoverageInfo(cvdo, object, metric,
ignore_descendants)

Description
[coverage, description] = getCoverageInfo(cvdo, object) collects Simulink Design
Verifier coverage for object, based on coverage results in cvdo. object is a handle to a block,
subsystem, or Stateflow chart. getCoverageData returns coverage data only for Simulink Design
Verifier library blocks in object's hierarchy.

[coverage, description] = getCoverageInfo(cvdo, object, metric) returns coverage
data for the block type specified in metric. If object does not match the block type,
getCoverageInfo does not return data.

[coverage, description] = getCoverageInfo(cvdo, object, metric,
ignore_descendants) returns coverage data about object, omitting coverage data for its
descendant objects if ignore_descendants equals 1.

Input Arguments
cvdo

cvdata object

object

In the model or Stateflow chart, object that received Simulink Design Verifier coverage. The following
are valid values for object.

BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID from a singly instantiated Stateflow chart
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

 getCoverageInfo

1-59

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or atomic
subchart and a Stateflow object API handle contained in
that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

Default:

metric

cvmetric.Sldv enumeration object, or a cell array of enumeration objects, with values that
correspond to Simulink Design Verifier library blocks. If you don't specify a metric,
getCoverageInfo returns coverage information for all available metrics for the specified object.

test Test Objective block
proof Proof Objective block
condition Test Condition block
assumption Proof Assumption block

ignore_descendants

Boolean value that specifies to ignore the coverage of descendant objects if set to 1.

Output Arguments
coverage

Two-element vector of the form [covered_outcomes total_outcomes].

covered_outcomes Number of test objectives satisfied for object
total_outcomes Total number of test objectives for object

coverage is empty if cvdo does not contain decision coverage results for object.

Note If object receives coverage for multiple metrics, then the output argument coverage is a cell
array with each cell corresponding to the objective outcomes for a metric. Each cell contains a two-
element vector of the form [covered_outcomes total_outcomes].

description

Structure array containing descriptions of each objective, and descriptions and execution counts for
each outcome within object.

Note If object receives coverage for multiple metrics, then the output argument description is a
cell array with each cell corresponding to the descriptions for a metric. Each cell contains a structure
array containing descriptions of each objective, and descriptions and execution counts for each
outcome within object.

1 Functions

1-60

Examples
Get coverage for all Proof Objective blocks in Verification Subsystem1
mdl = 'sldvdemo_powerwindow_vs';
open_system(mdl)
set_param(mdl, 'StopTime', '10')
testObj = cvtest(mdl);
testObj.settings.designverifier = 1;
data = cvsim(testObj);
verifSubsys = [mdl '/Verification Subsystem1'];
covProof = getCoverageInfo(data, verifSubsys, cvmetric.Sldv.proof)

covProof is a two-element vector of the form [covered_outcomestotal_outcomes] showing 1
covered outcome out of 1 total proof objective outcome.

Get coverage for a specific Test Objective block in Verification Subsystem1

mdl = 'sldvdemo_powerwindow_vs';
open_system(mdl)
set_param(mdl, 'StopTime', '10')
testObj = cvtest(mdl);
testObj.settings.designverifier = 1;
data = cvsim(testObj);
verifSubsys = [mdl '/Verification Subsystem1'];
testObjBlock = [verifSubsys '/Test Objective2'];
covTest = getCoverageInfo(data, testObjBlock)

covTest is a two-element vector of the form [covered_outcomes total_outcomes] showing 0
covered outcomes out of 1 total test objective outcome.

Get coverage data and descriptions for all available metrics recorded in Verification
Subsystem1

mdl = 'sldvdemo_powerwindow_vs';
open_system(mdl)
set_param(mdl, 'StopTime', '10')
testObj = cvtest(mdl);
testObj.settings.designverifier = 1;
data = cvsim(testObj);
verifSubsys = [mdl '/Verification Subsystem1'];
[covAll, descrAll] = getCoverageInfo(data, verifSubsys, ...
{cvmetric.Sldv.proof, cvmetric.Sldv.test})

covAll is a cell array with cells corresponding to the objective outcomes for each metric. descrAll
is a cell array with cells corresponding to descriptions of each metric.

covAll{1}
covAll{2}

covAll{1} is a two-element vector of the form [covered_outcomes total_outcomes] showing 1
covered outcomes out of 1 total proof objective outcomes. covAll{2} is a two-element vector of the
form [covered_outcomes total_outcomes] showing 0 covered outcomes out of 1 total test objective
outcomes.

descrAll{1}
descrAll{2}

 getCoverageInfo

1-61

descrAll{1} is a structure array containing descriptions of each proof objective, and descriptions
and execution counts for each outcome. descrAll{2} is a structure array containing descriptions of
each test objective, and descriptions and execution counts for each outcome.

Alternatives
Use the coverage settings to collect and display coverage results for Simulink Design Verifier library
blocks:

1 Open the model.
2 In the Model Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select Objectives and constraints.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo | executioninfo |
relationalboundaryinfo

Topics
“Simulink Design Verifier Coverage”

Introduced in R2009b

1 Functions

1-62

mcdcinfo
Retrieve modified condition/decision coverage information from cvdata object

Syntax
coverage = mcdcinfo(cvdo, object)
coverage = mcdcinfo(cvdo, object, mode)
coverage = mcdcinfo(cvdo, object, ignore_descendants)
[coverage, description] = mcdcinfo(cvdo, object)

Description
coverage = mcdcinfo(cvdo, object) returns modified condition/decision coverage (MCDC)
results from the cvdata object cvdo for the model component specified by object.

coverage = mcdcinfo(cvdo, object, mode) returns modified condition/decision coverage
(MCDC) results from the cvdata object cvdo for the model component specified by object for the
simulation mode mode.

coverage = mcdcinfo(cvdo, object, ignore_descendants) returns MCDC results for
object, depending on the value of ignore_descendants.

[coverage, description] = mcdcinfo(cvdo, object) returns MCDC results and text
descriptions of each condition/decision in object.

Input Arguments
cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant objects
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

The object argument specifies an object in the Simulink model or Stateflow diagram that receives
decision coverage. Valid values for object include the following:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID

 mcdcinfo

1-63

Object Specification Description
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or atomic
subchart and a Stateflow object API handle contained in
that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block and the

name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and the

name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block, the

name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the name of

a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-Loop (PIL)
simulation mode, valid values for object include the following:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a function

name.
{Model, fileName} Cell array with a model name (or model handle) and the

name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle), the

name of a source file, and a function name.

mode

The mode argument specifies the simulation mode for coverage. Valid values for mode include the
following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.

1 Functions

1-64

Object Specification Description
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

Output Arguments
coverage

Two-element vector of the form [covered_outcomes total_outcomes]. coverage is empty if
cvdo does not contain modified condition/decision coverage results for object. The two elements
are:

covered_outcomes Number of condition/decision outcomes satisfied
for object

total_outcomes Total number of condition/decision outcomes for
object

description

A structure array containing the following fields:

text Description of the condition/decision measured
condition A structure array containing condition/decision

info for individual condition outcomes
isFiltered Whether the block is filtered
filterRationale The filtering rationale
justifiedCoverage The justified coverage conditions
isJustified Whether the block is justified

Examples
Collect MCDC coverage for the slvnvdemo_cv_small_controller model and determine the
percentage of MCDC coverage collected for the Logic block in the Gain subsystem:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
%Create test specification object
testObj = cvtest(mdl)
%Enable MCDC coverage
testObj.settings.mcdc = 1;
%Simulate model
data = cvsim(testObj)
%Retrieve MCDC results for Logic block
blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = mcdcinfo(data, blk_handle)
%Percentage of MCDC outcomes covered
percent_cov = 100 * cov(1) / cov(2)

 mcdcinfo

1-65

Alternatives
Use the coverage settings to collect MCDC coverage for a model:

1 Open the model.
2 In the Model Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select MCDC as the structural coverage level.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model by clicking the Run button and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | getCoverageInfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo | executioninfo |
relationalboundaryinfo

Topics
“Modified Condition/Decision Coverage (MCDC)”
“MCDC Analysis”

Introduced in R2006b

1 Functions

1-66

overflowsaturationinfo
Retrieve saturation on integer overflow coverage from cvdata object

Syntax
coverage = overflowsaturationinfo(covdata, object)
coverage = overflowsaturationinfo(covdata, object, ignore_descendants)
[coverage, description] = overflowsaturationinfo(covdata, object)

Description
coverage = overflowsaturationinfo(covdata, object) returns saturation on integer
overflow coverage results from the cvdata object covdata for the model object specified by object
and its descendants.

coverage = overflowsaturationinfo(covdata, object, ignore_descendants) returns
saturation on integer overflow coverage results from the cvdata object covdata for the model
object specified by object and, depending on the value of ignore_descendants, descendant
objects.

[coverage, description] = overflowsaturationinfo(covdata, object) returns
saturation on integer overflow coverage results from the cvdata object covdata for the model
object specified by object, and textual descriptions of each coverage outcome.

Examples

Extract Saturation on Integer Overflow Data

This example shows how to use overflowsaturationinfo to extract saturation on integer overflow
data for a MinMax block from a cvdata object.

Generate coverage data

Open the model and set coverage settings.

load_system('slcoverage_fuelsys');

Create a Simulink.SimulationInput object to change configuration parameters without
modifying the model.

covSet = Simulink.SimulationInput('slcoverage_fuelsys');

Turn on coverage analysis and configure Simulink® to save the coverage data in a separate cvdata
object in the workspace.

covSet = covSet.setModelParameter('CovEnable','on');
covSet = covSet.setModelParameter('CovSaveSingleToWorkspaceVar','on');
covSet = covSet.setModelParameter('CovSaveName','covData');
covSet = covSet.setModelParameter('CovScope','EntireSystem');

 overflowsaturationinfo

1-67

Enable collection of saturation on integer overflow Coverage and simulate the model by calling sim
with the SimulationInput object as the input.

covSet = covSet.setModelParameter('CovMetricSaturateOnIntegerOverflow','on');
simOut = sim(covSet);

Extract saturation on integer overflow results

Get the block handle to the MinMax block using get_param and then get the saturation on integer
overflow results.

blockHandle = get_param(['slcoverage_fuelsys/',...
 'Engine Gas Dynamics/Mixing & Combustion/MinMax'],'Handle');
saturationResults = overflowsaturationinfo(covData,blockHandle)
percentSaturationCoverage = 100 * saturationResults(1)/saturationResults(2)

saturationResults =

 1 2

percentSaturationCoverage =

 50

One out of two saturation on integer overflow decision outcomes were satisfied for the MinMax block
in the Mixing & Combustion subsystem, so it received 50% saturation on integer overflow
coverage.

Determine Individual Integer Overflow Outcomes

This example shows how to use overflowsaturationinfo to determine whether or not integer
overflow occurs for a block in a model.

Generate coverage data

Load the slvnvdemo_saturation_on_overflow_coverage example model.

load_system('slvnvdemo_saturation_on_overflow_coverage');

Set coverage setting using a Simulink.SimulationInput object. Turn coverage on and configure
Simulink® to output a cvdata object into the workspace.

covSet = Simulink.SimulationInput('slvnvdemo_saturation_on_overflow_coverage');
covSet = covSet.setModelParameter('CovEnable','on');
covSet = covSet.setModelParameter('CovSaveSingleToWorkspaceVar','on');
covSet = covSet.setModelParameter('CovSaveName','covData');
covSet = covSet.setModelParameter('CovScope','EntireSystem');

Extract saturation on integer overflow results

Retrieve saturation on integer overflow coverage results and description for the Sum block in the
Controller subsystem of the Test Unit subsystem.

1 Functions

1-68

covSet = covSet.setModelParameter('CovMetricSaturateOnIntegerOverflow','on');
simOut = sim(covSet);
[covResults, covDesc] = overflowsaturationinfo(covData, ...
 ['slvnvdemo_saturation_on_overflow_coverage/Test Unit /' ...
 'Controller/Sum'])
percentSaturation = 100 * covResults(1)/covResults(2)

covResults =

 1 2

covDesc =

 struct with fields:

 isFiltered: 0
 isJustified: 0
 justifiedCoverage: 0
 filterRationale: ''
 decision: [1x1 struct]

percentSaturation =

 50

One out of two saturation on integer overflow decision outcomes were satisfied for the Sum block, so
it received 50% saturation on integer overflow coverage.

Review the number of times the Sum block evaluated to each saturation on integer overflow outcome
during simulation.

outcome1 = covDesc.decision.outcome(1)
outcome2 = covDesc.decision.outcome(2)

outcome1 =

 struct with fields:

 execCount: 3
 executionCount: 3
 text: 'false'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 executedIn: []

outcome2 =

 struct with fields:

 execCount: 0
 executionCount: 0

 overflowsaturationinfo

1-69

 text: 'true'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 executedIn: []

During simulation, integer overflow did not occur in the Sum block because the 'true' outcome has
an execution count of 0.

If integer overflow is not possible for a block in your model, consider clearing the Saturate on
integer overflow block parameter to optimize efficiency of your generated code.

Input Arguments
covdata — Coverage results data
cvdata object

Coverage results data, specified as a cvdata object.

object — Model or model component
full path | handle

Model or model component, specified as a full path, handle, or array of paths or handles.

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or atomic
subchart and a Stateflow object API handle contained in
that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

Example: 'slvnvdemo_saturation_on_overflow_coverage'
Example: get_param('slvnvdemo_cv_small_controller/Saturation', 'Handle')

ignore_descendants — Preference to ignore coverage of descendant objects
0 (default) | 1

Preference to ignore coverage of descendant objects, specified as a logical value.
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

1 Functions

1-70

Data Types: logical

Output Arguments
coverage — Saturation on overflow coverage results for object
numerical vector

Saturation on overflow coverage results, stored in a two-element vector of the form
[covered_outcomes total_outcomes]. The two elements are:

covered_outcomes Number of saturation on integer overflow
outcomes satisfied for object

total_outcomes Total number of saturation on integer overflow
outcomes for object

Data Types: double

description — Textual description of coverage outcomes
structure array

Textual description of coverage outcomes for the model component specified by object, returned as
a structure array. Depending on the types of model coverage collected, the structure array can have
different fields. If only saturation on overflow coverage is collected, the structure array contains the
following fields:

isFiltered 0 if the model component specified by object is
not excluded from coverage recording. 1 if the
model component specified by object is
excluded from coverage recording. For more
information about excluding objects from
coverage, see “Coverage Filtering”.

decision.text 'Saturate on integer overflow'
decision.outcome Structure array containing two fields for each

coverage outcome:

executionCount Number of times
saturation on integer
overflow for object
evaluated to the
outcome described by
text.

text 'true' or 'false'

Saturation on integer overflow has two possible
outcomes, 'true' and 'false'.

 overflowsaturationinfo

1-71

decision.isFiltered 0 if the model component specified by object is
not excluded from coverage recording. 1 if the
model component specified by object is
excluded from coverage recording. For more
information about excluding objects from
coverage, see “Coverage Filtering”.

decision.filterRationale Rationale for filtering the model component
specified by object, if object is excluded from
coverage and a rationale is specified. For more
information about excluding objects from
coverage, see “Coverage Filtering”.

Data Types: struct

See Also
cvtest | cvsim | decisioninfo | complexityinfo | conditioninfo | getCoverageInfo |
mcdcinfo | sigrangeinfo | sigsizeinfo | tableinfo | executioninfo |
relationalboundaryinfo

Topics
“Command Line Verification Tutorial”
“Saturate on Integer Overflow Coverage”

Introduced in R2013a

1 Functions

1-72

relationalboundaryinfo
Retrieve relational boundary coverage from cvdata object

Syntax
coverage = relationalboundaryinfo(covdata, object)
coverage = relationalboundaryinfo(covdata, object,mode)
coverage = relationalboundaryinfo(covdata, object, ignore_descendants)
[coverage, description] = relationalboundaryinfo(covdata, object)

Description
coverage = relationalboundaryinfo(covdata, object) returns relational boundary
coverage results from the cvdata object covdata for the model object specified by object and its
descendants.

coverage = relationalboundaryinfo(covdata, object,mode) returns relational boundary
coverage results from the cvdata object covdata for the model object specified by object and its
descendants for the simulation mode mode.

coverage = relationalboundaryinfo(covdata, object, ignore_descendants) returns
relational boundary coverage results from the cvdata object covdata for the model object specified
by object and, depending on the value of ignore_descendants, descendant objects.

[coverage, description] = relationalboundaryinfo(covdata, object) returns
relational boundary coverage results from the cvdata object covdata for the model object specified
by object, and textual descriptions of each coverage outcome.

Examples

Collect Relational Boundary Coverage for Supported Block in Model

This example shows how to collect relational boundary coverage information for a Saturation block in
a model. For more information on blocks supported for relational boundary coverage, see “Model
Objects That Receive Coverage”.

Open the slvnvdemo_cv_small_controller model. Create a model coverage test specification
object for the model.

open_system('slvnvdemo_cv_small_controller');
testObj = cvtest('slvnvdemo_cv_small_controller');

In the model coverage test specification object, activate relational boundary coverage.

testObj.settings.relationalop = 1;

Simulate the model and collect coverage results in a cvdata object.

dataObj = cvsim(testObj);

 relationalboundaryinfo

1-73

Obtain relational boundary coverage results for the Saturation block in
slvnvdemo_cv_small_controller. The coverage results are stored in a two-element vector of the
form [covered_outcomes total_outcomes].

blockHandle = get_param('slvnvdemo_cv_small_controller/Saturation','Handle');;
[covResults, covDesc] = relationalboundaryinfo(dataObj, blockHandle)

covResults =

 2 4

covDesc =

 isFiltered: 0
 decision: [1x2 struct]

The field decision is a 1 X 2 structure. Each element of decision corresponds to a relational
operation in the block. The Saturation block contains two comparisons. The first comparison is with a
lower limit and the second with an upper limit. Therefore, decision is a 2-element structure.

View the first operation in the block that receives relational boundary coverage. For the Saturation
block, the first relational operation is input > lowerlimit.

covDesc.decision(1)

ans =

 outcome: [1x2 struct]
 text: 'input - lowerlimit'
 isFiltered: 0
 filterRationale: ''

The text field shows the two operands. The isFiltered field is set to 1 if the block is filtered from
relational boundary coverage. For more information, see “Coverage Filtering”.

View results for the first relational operation in the block.

for(i=1:2)
 covDesc.decision(1).outcome(i)
end

ans =

 isActive: 1
 execCount: 0
 text: '[-tol..0]'

ans =

 isActive: 1
 execCount: 0
 text: '(0..tol]'

View the second operation in the block that receives relational boundary coverage. For the Saturation
block, the second relational operation is input < upperlimit.

covDesc.decision(2)

1 Functions

1-74

ans =

 outcome: [1x2 struct]
 text: 'input - upperlimit'
 isFiltered: 0
 filterRationale: ''

View results for the second relational operation in the block.

for(i=1:2)
 covDesc.decision(2).outcome(i)
end

ans =

 isActive: 1
 execCount: 1
 text: '[-tol..0)'

ans =

 isActive: 1
 execCount: 2
 text: '[0..tol]'

Input Arguments
covdata — Coverage results data
cvdata object

Coverage results data, specified as a cvdata object.

object — Model or model component
full path | handle

Model or model component, specified as a full path, handle, or array of paths or handles.

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or atomic
subchart and a Stateflow object API handle contained in
that chart or subchart

 relationalboundaryinfo

1-75

Object Specification Description
{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block and the

name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and the

name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block, the

name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the name of

a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-Loop (PIL)
simulation mode, valid values for object include the following:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a function

name.
{Model, fileName} Cell array with a model name (or model handle) and the

name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle), the

name of a source file, and a function name.

Example: get_param('slvnvdemo_cv_small_controller/Saturation', 'Handle')

mode — The mode argument specifies the simulation mode for coverage
character vector or string

Valid values for mode include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or Processor-in-the-

Loop (PIL) simulation mode.
'ModelRefSIL' (or 'ModelRefPIL') Model reference in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with code
interface set to top model.

ignore_descendants — Preference to ignore coverage of descendant objects
0 (default) | 1

Preference to ignore coverage of descendant objects, specified as a logical value.

1 Functions

1-76

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects
Data Types: logical

Output Arguments
coverage — Relational boundary coverage results for object
numerical vector

Relational boundary coverage results, stored in a two-element vector of the form
[covered_outcomes total_outcomes]. The two elements are:

covered_outcomes Number of relational boundary outcomes satisfied
for object

total_outcomes Total number of relational boundary outcomes for
object

Data Types: double

description — Textual description of coverage outcomes
structure array

Textual description of coverage outcomes for the model component specified by object, returned as
a structure array. Depending on the types of model coverage collected, the structure array can have
different fields. If only relational boundary coverage is collected, the structure array contains the
following fields:

isFiltered 0 if the model component specified by object is
not excluded from coverage recording. 1 if the
model component specified by object is
excluded from coverage recording. For more
information about excluding objects from
coverage, see “Coverage Filtering”.

decision.text Character vector or string of the form:

op_1-op_2

• op_1 is the left operand in the relational
operation.

• op_2 is the right operand in the relational
operation.

 relationalboundaryinfo

1-77

decision.outcome Structure array containing two fields for each
coverage outcome:

isActive Boolean variable. If this
variable is false, it
indicates that decisions
were not evaluated
during simulation due
to variable signal size.

execCount Number of times op_1-
op_2 fell in the range
described by text

text The range around the
relational boundary
considered for
coverage. For more
information, see
“Relational Boundary”.

decision.isFiltered 0 if the model component specified by object is
not excluded from coverage recording. 1 if the
model component specified by object is
excluded from coverage recording. For more
information about excluding objects from
coverage, see “Coverage Filtering”.

decision.filterRationale Rationale for filtering the model component
specified by object, if object is excluded from
coverage and a rationale is specified. For more
information about excluding objects from
coverage, see “Coverage Filtering”.

Data Types: struct

See Also
cvtest | cvsim | decisioninfo | complexityinfo | conditioninfo | getCoverageInfo |
mcdcinfo | sigrangeinfo | sigsizeinfo | tableinfo | overflowsaturationinfo |
executioninfo | relationalboundaryinfo

Topics
“Command Line Verification Tutorial”
“Relational Boundary Coverage”

Introduced in R2014b

1 Functions

1-78

sigrangeinfo
Retrieve signal range coverage information from cvdata object

Syntax
[min, max] = sigrangeinfo(cvdo, object)
[min, max] = sigrangeinfo(cvdo, object, portID)

Description
[min, max] = sigrangeinfo(cvdo, object) returns the minimum and maximum signal values
output by the model component object within the cvdata object cvdo.

[min, max] = sigrangeinfo(cvdo, object, portID) returns the minimum and maximum
signal values associated with the output port portID of the Simulink block object.

Input Arguments
cvdo

cvdata object

object

An object in the model or Stateflow chart that receives signal range coverage. Valid values for
object include the following:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or atomic
subchart and a Stateflow object API handle contained in
that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

portID

Output port of the block object

 sigrangeinfo

1-79

Output Arguments
max

Maximum signal value output by the model component object within the cvdata object, cvdo. If
object outputs a vector, min and max are also vectors.

min

Minimum signal value output by the model component object within the cvdata object, cvdo. If
object outputs a vector, min and max are also vectors.

Examples

Collect Signal Range Data for a Block

This example shows how to extract signal range info from a coverage data object.

Load the model and set up coverage options

Load the model into memory. This example uses a small controller model.

modelName = 'slvnvdemo_cv_small_controller';
load_system(modelName)

Declare coverage settings using a structure of parameter names and values. For a complete list of
coverage parameters and their possible values, see “Coverage Settings” on page 2-2.

covOpts.CovEnable = 'on';
covOpts.CovSaveSingleToWorkspaceVar = 'on';
covOpts.CovSaveName = 'covData';
covOpts.CovMetricSignalRange = 'on';

Simulate the model using sim with the model name and the parameter structure as inputs.

simOut = sim(modelName,covOpts);

Get signal range data

Get the block handle of the Product block using get_param.

bHandle = get_param([modelName,'/Product'],'Handle');

Get the signal range data by calling sigrangeinfo with the cvdata object and the block handle as
inputs.

[minVal, maxVal] = sigrangeinfo(covData,bHandle)

minVal =

 0

maxVal =

1 Functions

1-80

 25.0000

Alternatives
Use the coverage settings to collect signal range coverage for a model:

1 Open the model for which you want to collect signal range coverage.
2 In the Model Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select Signal Range.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model by clicking the Run button and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigsizeinfo | tableinfo | executioninfo |
relationalboundaryinfo

Introduced in R2006b

 sigrangeinfo

1-81

sigsizeinfo
Retrieve signal size coverage information from cvdata object

Syntax
[min, max, allocated] = sigsizeinfo(data, object)
[min, max, allocated] = sigsizeinfo(data, object, portID)

Description
[min, max, allocated] = sigsizeinfo(data, object) returns the minimum, maximum,
and allocated signal sizes for the outputs of model component object within the coverage data
object data, if object supports variable size signals.

[min, max, allocated] = sigsizeinfo(data, object, portID) returns the minimum and
maximum signal sizes associated with the output port portID of the model component object.

Input Arguments
data

cvdata object

object

An object in the model or Stateflow chart that receives signal size coverage. Valid values for object
include the following:

Object Specification Description
BlockPath Full path to a Simulink model or block
BlockHandle Handle to a Simulink model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or atomic

subchart and the ID of an object contained in that chart
or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or atomic
subchart and a Stateflow object API handle contained in
that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that chart
or subchart

portID

Output port number of the model component object

1 Functions

1-82

Output Arguments
max

Maximum signal size output by the model component object within the cvdata object data. If
object has multiple outputs, max is a vector.

min

Minimum signal size output by the model component object within the cvdata object data. If
object has multiple outputs, min is a vector.

allocated

Allocated signal size output by the model component object within the cvdata object data. If
object has multiple outputs, allocated is a vector.

Examples
Collect signal size coverage data for the Switch block in the sldemo_varsize_basic model:

mdl = 'sldemo_varsize_basic';
open_system(mdl);
%Create test spec object
testObj = cvtest(mdl);
%Enable signal size coverage
testObj.settings.sigsize=1;
%Simulate the model
data = cvsim(testObj);
%Set the block handle
blk_handle = get_param([mdl, '/Switch'], 'Handle');
%Get signal size data
[minVal, maxVal, allocVal] = sigsizeinfo(data, blk_handle);

Alternatives
Use the coverage settings to collect signal size coverage for a model:

1 Open the model for which you want to collect signal size coverage.
2 In the Simulink Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select Signal Size.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model by clicking the Run button and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | mcdcinfo | sigrangeinfo |
tableinfo | executioninfo | relationalboundaryinfo | overflowsaturationinfo |
getCoverageInfo

 sigsizeinfo

1-83

Introduced in R2010b

1 Functions

1-84

slvnvextract
Extract atomic subsystem or subchart contents into new model

Syntax
newModel = slvnvextract(subcomponent)
newModel = slvnvextract(subcomponent,showModel)

Description
newModel = slvnvextract(subcomponent) extracts the contents of the Atomic Subsystem block
or atomic subchart subcomponent and creates a model. slvnvextract returns the name of the new
model in newModel. If the model name already exists,slvnvextract uses the subsystem or subchart
name for the model name, appending a numeral to the model name.

Note If an atomic subchart calls an exported graphical function that is outside the subchart,
slvnvextract creates the model, but the new model does not compile.

newModel = slvnvextract(subcomponent,showModel) opens the extracted model if you set
showModel to true. The extracted model is loaded only if you set showModel to false.

Input Arguments
subcomponent — Subsystem or subchart whose contents are extracted
character vector or string

The full path to the atomic subsystem or atomic subchart whose contents are extracted.

showModel — Display extracted model
true (default) | false

Specify if you want the extracted model to be displayed.

Output Arguments
newModel — The name of the new extracted model
character vector or string

Reports the name of the new extracted model created by slvnvextract.

Examples

Extract Atomic Subsystem to New Model

This example shows how to extract an atomic subsystem from a model and copy it to a new model
using slvnvextract.

 slvnvextract

1-85

Load the sldemo_lct_bus model.

modelName = 'slcoverage_lct_bus';
load_system(modelName);
load slcoverage_lct_data.mat

The slcoverage_lct_bus model has an S-Function. Build the S-Function by using legacy_code.

def = legacy_code('initialize');
def.SFunctionName = 'slcoverage_sfun_counterbus';
def.OutputFcnSpec = 'void counterbusFcn(COUNTERBUS u1[1], int32 u2, COUNTERBUS y1[1], int32 y2[1])';
def.HeaderFiles = {'counterbus.h'};
def.SourceFiles = {'counterbus.c'};
def.Options.supportCoverage = true;
legacy_code('generate_for_sim', def);

Start Compiling slcoverage_sfun_counterbus
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex66778043 -c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp5231d263_a881_46aa_b9a4_be7e5656c3e7\counterbus.c -outdir C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe33d1bca_a219_4722_90f7_777f5d2427e7
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex66778043 C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp5231d263_a881_46aa_b9a4_be7e5656c3e7\tp7983df8c_ed1d_4841_8bb4_e1759daf62f1.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe33d1bca_a219_4722_90f7_777f5d2427e7\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output slcoverage_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex66778043 -c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex66778043\counterbus.c -outdir C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe33d1bca_a219_4722_90f7_777f5d2427e7
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex66778043 C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp5231d263_a881_46aa_b9a4_be7e5656c3e7\slcoverage_sfun_counterbus.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp5231d263_a881_46aa_b9a4_be7e5656c3e7\tpbf942ddc_b6a3_4664_9279_c93d00e0a755.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp5231d263_a881_46aa_b9a4_be7e5656c3e7\tp517aa69b_d083_48b9_a372_4275ccfd8f02.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe33d1bca_a219_4722_90f7_777f5d2427e7\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output slcoverage_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling slcoverage_sfun_counterbus
Exit

Extract the slCounter subsystem from the model and copy it to a new model.

newModel = slvnvextract([modelName,'/slCounter'],true)

newModel =

 'slCounter'

Extract Subchart and Copy to a New Model

This example shows how to extract an atomic Stateflow® chart from a model and copy it to a new
model using slvnvextract.

1 Functions

1-86

Load the slvnvdemo_covfilt model.

modelName = 'slvnvdemo_covfilt';
load_system(modelName);

Extract the Mode Logic atomic subchart from the model and copy it into a new model.

newModel = slvnvextract([modelName,'/Mode Logic'],true)

newModel =

 'ModeLogic'

Introduced in R2010b

 slvnvextract

1-87

slvnvharnessopts
Generate default options for slvnvmakeharness

Syntax
harnessopts = slvnvharnessopts

Description
harnessopts = slvnvharnessopts generates the default configuration for running
slvnvmakeharness.

Output Arguments
harnessopts — Default harness options
structure

Default harness options, returned as a structure. The harnessopts structure has the following
fields. If you do not specify any values, default values are used.

Field Description
harnessFilePath Specifies the file path for creating the harness model. If an

invalid path is specified, slvnvmakeharness does not save the
harness model, but it creates and opens the harness model. If
you do not specify this option, slvnvmakeharness generates a
new harness model and saves it in the MATLAB current folder.

Default: ''
modelRefHarness Generates the test harness model that includes model in a

Model block. When false, the test harness model includes a
copy of model.

Default: true
usedSignalsOnly When true, the Signal Builder block in the harness model has

signals only for input signals in the model. You must have the
Simulink Design Verifier software and model must be compatible
with that software to detect the input signals.

Default: false

Examples
Create a Coverage Harness with Default Options

This example shows how to set harness options for a coverage harness.

Open the model using open_system.

1 Functions

1-88

open_system('slvnvdemo_counter')

Create the harness options object using slvnvharnessopts.

harnessOpts = slvnvharnessopts

harnessOpts =

 struct with fields:

 harnessFilePath: ''
 modelRefHarness: 1
 usedSignalsOnly: 0
 harnessSource: 'Signal Builder'

Use the harnessOpts to create the harness file using slvnvmakeharness.

harnessFile = slvnvmakeharness('slvnvdemo_counter', ...
 '', harnessOpts);

 slvnvharnessopts

1-89

1 Functions

1-90

See Also
slvnvmakeharness

Introduced in R2010b

 slvnvharnessopts

1-91

slvnvlogsignals
Log test data for component or model during simulation

Syntax
data = slvnvlogsignals(model_block)
data = slvnvlogsignals(harness_model)
data = slvnvlogsignals(harness_model, test_case_index)

Description
data = slvnvlogsignals(model_block) simulates the model that contains model_block and
logs the input signals to the model_block block. model_block must be a Simulink Model block.

data = slvnvlogsignals(harness_model) simulates every test case in harness_model and
logs the input signals to the Test Unit block in the harness model. Generate harness_model by using
the Simulink Design Verifier analysis, sldvmakeharness, or slvnvmakeharness.

data = slvnvlogsignals(harness_model, test_case_index) simulates every test case in
the Signal Builder block of the harness_model specified by test_case_index. slvnvlogsignals
logs the input signals to the Test Unit block in the harness model. If you omit test_case_index,
slvnvlogsignals simulates every test case in the Signal Builder.

Input Arguments
model_block — Component or model
character vector or string | handle

The full block path name or handle to a Simulink Model block, specified as a character vector or
string.

harness_model — Harness name
character vector or string | handle

Name or handle to a harness model that the Simulink Design Verifier software, sldvmakeharness,
or slvnvmakeharness creates, specified as a character vector or string.

test_case_index — Indices of test cases to be simulated
Integer array

Array of integers that specifies which test cases in the Signal Builder block of the harness model to
simulate.

Output Arguments
data — Output data
structure

Structure that contains the logged data.

1 Functions

1-92

Examples

Log and Visualize Simulation Data

This example shows how to log simulation data for a Model block and use the logged data to create a
harness model and visualize the data in the referenced model.

Open the directory that contains the example files.

openExample('ComponentBasedModelingWithModelReferenceExample')

Open the model and log the signals for the CounterB block.

open_system('sldemo_mdlref_basic');
data = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

Create a harness model for sldemo_mdlref_counter using the logged data and the default harness
options.

load_system('sldemo_mdlref_counter');
harnessOpts = slvnvharnessopts
[harnessFilePath] = ...
 slvnvmakeharness('sldemo_mdlref_counter', data, ...
 harnessOpts);

See Also
sldvmakeharness | slvnvruncgvtest | slvnvruntest | slvnvmakeharness

Introduced in R2010b

 slvnvlogsignals

1-93

slvnvmakeharness
Generate Simulink Coverage harness model

Syntax
harnessFilePath = slvnvmakeharness(model)
harnessFilePath = slvnvmakeharness(model, dataFile)
harnessFilePath = slvnvmakeharness(model, dataFile, harnessOpts)

Description
harnessFilePath = slvnvmakeharness(model) generates a test harness from model, which is
a handle to a Simulink model or a character vector or string with the model name.
slvnvmakeharness returns the path and file name of the generated harness model in
harnessFilePath. slvnvmakeharness creates a harness model containing the Model block, a
Signal Builder block, and a size-type conversion block, by default. The test harness includes one
default test case that specifies the default values for all input signals.

harnessFilePath = slvnvmakeharness(model, dataFile) generates a test harness from the
data file dataFile.

harnessFilePath = slvnvmakeharness(model, dataFile, harnessOpts) generates a test
harness from model by using the dataFile and harnessOpts, which specifies the harness creation
options. Requires '' for dataFile if dataFile is not available. The default dataFile argument
creates a test harness with a single test case with default values for the inputs.

Input Arguments
model — Simulink model
character vector or string | handle

Simulink model or the model name.

dataFile — Structure created by slvnvlogsignals or slvnvmergedata
'' (default) | structure

Contains information about the model, its input and output ports, and any preexisting test signals.
This argument can be either the structure itself or the name of the .mat file containing this
structure. Use this parameter when you have previously logged test data that you want to import into
a new test harness.

harnessOpts — Configuration for slvnvmakeharness
structure

A structure whose fields specify the configuration for slvnvmakeharness.

1 Functions

1-94

Field Description
harnessFilePath Specifies the file path for creating the harness model. If an invalid

path is specified, slvnvmakeharness does not save the harness
model, but it creates and opens the harness model. If you do not
specify this option, the slvnvoptions object is used. Also,
slvnvmakeharness generates a new harness model and saves it
in the MATLAB current folder.

Default: ''
modelRefHarness Generates the test harness model that includes model in a Model

block. When false, the test harness model includes a copy of
model.

Default: true
usedSignalsOnly When true, the Signal Builder block in the harness model has

signals for input signals in the model. You must have the Simulink
Design Verifier software and model must be compatible with that
software to detect the input signals.

Default: false

Note To create a default harnessOpts object, at the MATLAB command prompt, type:

slvnvharnessopts

Output Arguments
harnessFilePath — Generated harness model
Character vector or string

The path and file name of the generated harness model.

Examples
Create a Test Harness Using the Default Options

Create a test harness for the sldemo_mdlref_house model using the default options:
open_system('sldemo_mdlref_house');
harnessOpts = slvnvharnessopts;
[harnessfile] = slvnvmakeharness('sldemo_mdlref_house', '', harnessOpts);

See Also
slvnvharnessopts | slvnvmergeharness

Introduced in R2010b

 slvnvmakeharness

1-95

slvnvmergedata
Combine test data from data files

Syntax
merged_data = slvnvmergedata(data1,data2,...)

Description
merged_data = slvnvmergedata(data1,data2,...) combines two or more test cases and
counterexamples data into a single test case data structure merged_data.

Input Arguments
data — Structure that contains test case or counterexample data
structure

Generated by running slvnvlogsignals or by running a Simulink Design Verifier analysis.

Output Arguments
merged_data — The merged test cases or counterexamples
structure

Structure that contains the merged test cases or counterexamples.

Examples
Log Signals and Merge Logged Data

This example shows how to merge logged data from multiple test cases.

Open the directory that contains the example files.
openExample('ComponentBasedModelingWithModelReferenceExample')

Open the sldemo_mdlref_basic model, which contains three Model blocks that reference the
sldemo_mdlref_counter model.
open_system('sldemo_mdlref_basic');

Log the input signals to the three Model blocks.
data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');
data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');
data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');

Merge the logged data.
merged_data = slvnvmergedata(data1, data2, data3);

Simulate the referenced model, sldemo_mdlref_counter, with coverage enabled with the merged
data.

1 Functions

1-96

open_system('sldemo_mdlref_counter');
runOpts = slvnvruntestopts;
runOpts.coverageEnabled = true;
[outData, initialCov] = slvnvruntest('sldemo_mdlref_counter', ...
 merged_data, runOpts);

Generate a coverage report to view the results.

cvhtml('Initial coverage', initialCov);

See Also
sldvrun | slvnvlogsignals | slvnvmakeharness | slvnvruncgvtest | slvnvruntest

Introduced in R2011a

 slvnvmergedata

1-97

slvnvmergeharness
Combine test data from harness models

Syntax
status = slvnvmergeharness(name, models, initialization_commands)
initialization_commands
slvnvmergeharness

Description
status = slvnvmergeharness(name, models, initialization_commands) collects the test
data and initialization commands from each test harness model and saves them in a handle to the
new model.

initialization_commands is a cell array of character vectors or strings that are the same length
as models. It defines parameter settings for the test cases of each test harness model.

slvnvmergeharness assumes that name and the rest of the models in models have only one Signal
Builder block on the top level. If a model in models does not meet this restriction or its top-level
Signal Builder block does not have the same number of signals as the top-level Signal Builder block in
name, slvnvmergeharness does not merge that model's test data into name.

Input Arguments
name — Name of the new harness model, to be stored in the default MATLAB folder
character vector or string

If name does not exist, slvnvmergeharness creates it as a copy of the first model in models.
slvnvmergeharness then merges data from other models listed in models into this model. If you
create name from a previous slvnvmergeharness run, subsequent runs of slvnvmergeharness
for name maintain the structure and initialization from the earlier run. If name matches an existing
Simulink model, slvnvmergeharness merges the test data from models into name.

models — Harness model names
cell array of character vectors or strings

Names of harness models that are inputs to slvnvmergeharness.

initialization_commands — Parameter settings for the test cases of each test harness
model
cell array of character vectors or strings

Cell array of character vectors or strings that is the same length as models.

Output Arguments
status — Status of data and initialization commands getting saved
1 | 0

1 Functions

1-98

slvnvmergeharness returns a status of 1 if the data and initialization commands are saved in
name. Otherwise, it returns 0.

Examples
Log Signals and Merge Test Harnesses

This example shows how to merge multiple test harnesses.

Open the directory that contains the example files.
openExample('ComponentBasedModelingWithModelReferenceExample')

Log the input signals to the three Model blocks in the sldemo_mdlref_basic example model.
open_system('sldemo_mdlref_basic');
data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');
data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');
data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');
open_system('sldemo_mdlref_counter');

Create three test harnesses using the logged signals.
harness1FilePath = slvnvmakeharness('sldemo_mdlref_counter', data1);
harness2FilePath = slvnvmakeharness('sldemo_mdlref_counter', data2);
harness3FilePath = slvnvmakeharness('sldemo_mdlref_counter', data3)
[~, harness1] = fileparts(harness1FilePath);
[~, harness2] = fileparts(harness2FilePath);
[~, harness3] = fileparts(harness3FilePath);

Merge the three test harnesses.
slvnvmergeharness('new_harness_model',{harness1, harness2, harness3});

See Also
slvnvlogsignals | slvnvmakeharness

Introduced in R2010b

 slvnvmergeharness

1-99

slvnvruncgvtest
Invoke Code Generation Verification (CGV) API and execute model

Syntax
cgvObject = slvnvruncgvtest(model, dataFile)
cgvObject = slvnvruncgvtest(model, dataFile, runOpts)

Description
cgvObject = slvnvruncgvtest(model, dataFile) invokes the Code Generation Verification
(CGV) API methods and executes the model by using all test cases in dataFile. cgvObject is a
cgv.CGV object that slvnvruncgvtest creates during the execution of the model.
slvnvruncgvtest sets the execution mode for cgvObject to'sim' by default.

cgvObject = slvnvruncgvtest(model, dataFile, runOpts) invokes CGV API methods and
executes the model by using test cases in dataFile. runOpts defines the options for executing the
test cases. The settings in runOpts determine the configuration of cgvObject.

Input Arguments
model — Model to execute
character vector or string

Name of the Simulink model that you execute.

dataFile — Input data
structure | character vector or string

Name of the data file or a structure that contains the input data. Generate data by either:

• Using the Simulink Design Verifier software to analyze the model.
• Using the slvnvlogsignals function.

runOpts — Specify the configuration of slvnvruncgvtest
structure

The fields of runOpts specify the configuration of slvnvruncgvtest .

Field Name Description
testIdx Test case index array to simulate from dataFile.

If testIdx = [] (the default), slvnvruncgvtest simulates all test
cases.

1 Functions

1-100

Field Name Description
allowCopyModel If you have not configured your model to execute test cases with the

CGV API, this field specifies creating and configuring the model.

If true and you have not configured your model to execute test cases
with the CGV API, slvnvruncgvtest copies the model, fixes the
configuration, and executes the test cases on the copied model.

If false (the default), an error occurs if the tests cannot execute with
the CGV API.

Note If you have not configured the top-level model or any referenced
models to execute test cases, slvnvruncgvtest does not copy the
model, even if allowCopyModel is true. An error occurs.

cgvCompType Defines the software-in-the-loop (SIL) or processor-in-the-loop (PIL)
approach for CGV:

• 'topmodel' (default)
• 'modelblock'

cgvConn Specifies mode of execution for CGV:

• 'sim' (default)
• 'sil'
• 'pil'

Note runOpts = slvnvruntestopts('cgv') returns a runOpts structure with the default
values for each field.

Output Arguments
cgvObject — Object created by slvnvruncgv test during the execution of model
cgv.CGV object

cgv.CGV object that slvnvruncgvtest creates during the execution of model.

slvnvruncgvtest saves the following data for each test case executed in an array of
Simulink.SimulationOutput objects inside cgvObject.

Field Description
tout_slvnvruncgvtest Simulation time
xout_slvnvruncgvtest State data
yout_slvnvruncgvtest Output signal data

 slvnvruncgvtest

1-101

Field Description
logsout_slvnvruncgvtest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging data

on the model

Examples
Log Signals, Run Tests, and Compare Results by Using the CGV API

This example shows how to log signals, run tests, and compare results for generated code using the
code generation API.

Open the directory that contains the example files.

openExample('ComponentBasedModelingWithModelReferenceExample')

Open the sldemo_mdlref_basic example model and log the input signals to the CounterA model
block.
open_system('sldemo_mdlref_basic');
load_system('sldemo_mdlref_counter');
loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

Create the default configuration object for slvnvruncgvtest and allow the model to be configured
to execute test cases with the CGV API.
runOpts = slvnvruntestopts('cgv');
runOpts.allowCopyModel = true;

Execute the test using the logged signals first in normal mode, and then in software-in-the-loop (SIL)
mode.
cgvObjectSim = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);
runOpts.cgvConn = 'sil';
cgvObjectSil = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

Compare the results of the first test case.
simout = cgvObjectSim.getOutputData(1);
silout = cgvObjectSil.getOutputData(1);
[matchNames, ~, mismatchNames, ~] = cgv.CGV.compare(simout, silout);
fprintf('\nTest Case: %d Signals match, %d Signals mismatch', ...
 length(matchNames), length(mismatchNames));

Tips
To run slvnvruncgvtest, you must have the Embedded Coder® software.

If your model has parameters that are not configured for executing test cases with the CGV API,
slvnvruncgvtest reports warnings about the invalid parameters. If you see these warnings, do one
of the following:

• Modify the invalid parameters and rerun slvnvruncgvtest.
• Set allowCopyModel in runOpts to be true and rerun slvnvruncgvtest. slvnvruncgvtest

makes a copy of your model configured for executing test cases, and invokes the CGV API.

1 Functions

1-102

See Also
cgv.CGV | slvnvlogsignals | slvnvruntest | slvnvruntestopts

Introduced in R2010b

 slvnvruncgvtest

1-103

slvnvruntest
Simulate model by using input data

Syntax
outData = slvnvruntest(model, dataFile)
outData = slvnvruntest(model, dataFile, runOpts)
[outData, covData] = slvnvruntest(model, dataFile, runOpts)

Description
outData = slvnvruntest(model, dataFile) simulates model by using all the test cases in
dataFile. outData is an array of Simulink.SimulationOutput objects. Each array element
contains the simulation output data of the corresponding test case.

outData = slvnvruntest(model, dataFile, runOpts) simulates model by using all the test
cases in dataFile. runOpts defines the options for simulating the test cases.

[outData, covData] = slvnvruntest(model, dataFile, runOpts) simulates model by
using the test cases in dataFile. When the runOpts field coverageEnabled is true, the Simulink
Coverage™ software collects model coverage information during the simulation. slvnvruntest
returns the coverage data in the cvdata object covData.

Input Arguments
model — Simulink model that you simulate
character vector or string | handle

The Simulink model to simulate.

dataFile — Input data
character vector or string | structure

Name of the data file or structure that contains the input data. You can generate dataFile with
Simulink Design Verifier software, or by running the slvnvlogsignals function.

runOpts — Configuration specification
structure

A structure whose fields specify the configuration of slvnvruntest.

Field Description
testIdx Test case index array to simulate from dataFile. If

testIdx is [], slvnvruntest simulates all test
cases.

Default: []

1 Functions

1-104

Field Description
coverageEnabled If true, specifies that the Simulink Coverage

software collects model coverage data during
simulation.

Default: false
coverageSetting cvtest object for collecting model coverage. If [],

slvnvruntest uses the existing coverage settings
for model.

Default: []
fastRestart If true, Simulink Coverage uses fast restart mode for

model simulation.

Default: true
useParallel If true, Simulink Coverage simulates test cases with

parallel computing. This option requires a Parallel
Computing Toolbox™ license.

Default: false

Output Arguments
outData — Output objects obtained after simulating the test cases
array of Simulink.SimulationOutput objects

Each Simulink.SimulationOutput object has the following fields.

Field Name Description
tout_slvnvruntest Simulation time
xout_slvnvruntest State data
yout_slvnvruntest Output signal data
logsout_slvnvruntest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging on the

model

covData — Object that contains model coverage data
cvdata object

cvdata object that contains the model coverage data collected during simulation.

Note covdata references a file containing the coverage results. The coverage data from the
referenced file is automatically loaded into memory when covdata is used by a coverage function.
This file gets stored in the sldv_covoutput folder inside the current directory.

 slvnvruntest

1-105

Examples
Analyze the Model and Examine the Output Data with the Simulation Data Inspector

This example shows how to analyze a model for coverage and example the output data.

Open the directory that contains the example files.
openExample('ComponentBasedModelingWithModelReferenceExample')

Analyze the sldemo_mdlref_basic model and log the input signals to the CounterA model block.
open_system('sldemo_mdlref_basic');
loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

Using the logged signals, simulate the model referenced in the Counter block.
runOpts = slvnvruntestopts;
runOpts.coverageEnabled = true;
load_system('sldemo_mdlref_counter');
[outData] = slvnvruntest('sldemo_mdlref_counter',...
 loggedData, runOpts);

Examine the output data from the first test case using the Simulation Data Inspector.
Simulink.sdi.createRun('Test Case 1 Output', 'namevalue',...
 {'output'}, {outData(1).find('logsout_slvnvruntest')});
Simulink.sdi.view;

Tips
The dataFile that you create with a Simulink Design Verifier analysis or by running
slvnvlogsignals contains time values and data values. When you simulate a model by using these
test cases, you might see missing coverage. This issue occurs when the time values in the dataFile
are not aligned with the current simulation time step due to numeric calculation differences. You see
this issue more frequently with multirate models—models that have multiple sample times.

Tips
• For useParallel, the following points must be considered when simulating test cases using

parallel computing:

• Starting a parallel pool can take time, which impacts the overall analysis time. To reduce the
analysis time:

• Make sure that the parallel pool is already running before you run a test generation
analysis. By default, the parallel pool shuts down after being idle for a specified number of
minutes. To change the setting, see “Specify Your Parallel Preferences” (Parallel Computing
Toolbox).

• Load Simulink on all the parallel pool workers.
• The simulation occurs sequentially when:

• The cluster is not local. Configure parallel preferences to use the local cluster only. See
“Specify Your Parallel Preferences” (Parallel Computing Toolbox).

• The model is in dirty state prior to launching the SLDV analysis.
• The model has ToFile blocks.

1 Functions

1-106

• The model in Software-in-the-loop (SIL) simulation mode.
• The model is an internal harness.

See Also
cvsim | cvtest | sim | slvnvruntestopts

Introduced in R2010b

 slvnvruntest

1-107

slvnvruntestopts
Generate simulation or execution options for slvnvruntest or slvnvruncgvtest

Syntax
runOpts = slvnvruntestopts
runOpts = slvnvruntestopts('cgv')

Description
runOpts = slvnvruntestopts generates a runOpts structure for slvnvruntest.

generatrunOpts = slvnvruntestopts('cgv')es a runOpts structure for slvnvruncgvtest.

Output Arguments
runOpts — Configuration specification of slvnvruntest or slvnvruncgvtest
structure

runOpts can have the following fields. If you do not specify a field, slvnvruncgvtest or
slvnvruntest uses the default value.

Field Name Description
testIdx Test case index array to simulate or execute from data file.

If testIdx = [], all test cases are simulated or executed.

Default: []
signalLoggingSaveFormat Available only for slvnvruntest.

Specifies the format of signal logging data for signals that connect
to the outport of the model and for intermediate signals that are
configured for logging.

If you specify Dataset, data is stored in the
Simulink.SimulationData.Dataset objects.

Default: 'Dataset'
coverageEnabled Available only for slvnvruntest.

If true, slvnvruntest collects model coverage data during
simulation.

Default: false

1 Functions

1-108

Field Name Description
coverageSetting Available only for slvnvruntest.

cvtest object for collecting model coverage.

If coverageSetting is [], slvnvruntest uses the coverage
settings for the model specified in the call to slvnvruntest.

Default: []
allowCopyModel Available only for slvnvruncgvtest.

If you have not configured your model to execute test cases with
the CGV API, this field specifies creating and configuring the
model.

If true and you have not configured the model to execute test
cases with the CGV API, slvnvruncgvtest copies the model,
fixes the configuration, and executes the test cases on the copied
model.

If false, an error occurs if the tests cannot execute with the CGV
API.

Note If you have not configured the top-level model or any
referenced models to execute test cases, slvnvruncgvtest does
not copy the model, even if allowCopyModel is true. An error
occurs.

Default:false
cgvCompType Available only for slvnvruncgvtest.

Defines the software-in-the-loop (SIL) or processor-in-the-loop
(PIL) approach for CGV:

• 'topmodel'
• 'modelblock'

Default:'topmodel'
cgvConn Available only for slvnvruncgvtest.

Specifies mode of execution for CGV:

• 'sim'
• 'sil'
• 'pil'

Default:'sim'

 slvnvruntestopts

1-109

Field Name Description
fastRestart Available only for slvnvruntest.

If true, Simulink Coverage uses fast restart mode for model
simulation.

Default: true
useParallel Available only for slvnvruntest.

If true, Simulink Coverage simulates test cases with parallel
computing. This option requires a Parallel Computing Toolbox
license.

Default: false

Examples
Create runOpts Objects for slvnvruntest and slvnvruncgvtest
% Create runOpts objects for slvnvruntest
runtest_opts = slvnvruntestopts;

% Create runOpts objects for slvnvruncgvtest
runcgvtest_opts = slvnvruntestopts('cgv')

Alternatives
Create a runOpts object at the MATLAB command line.

See Also
slvnvruncgvtest | slvnvruntest

Introduced in R2010b

1 Functions

1-110

slwebview_cov
Export Simulink models to Web views with coverage

Syntax
filename = slwebview_cov(sysname)
filename = slwebview_cov(sysname,Name,Value)

Description
filename = slwebview_cov(sysname) exports the system sysname and its children to a web
page filename with contextual coverage information for the system displayed on a separate panel of
the layered model structure Web view.

filename = slwebview_cov(sysname,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Note You can use slwebview_cov only if you have also installed Simulink Report Generator™.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file filename

filename = slwebview_cov(gcs, 'LookUnderMasks', 'all', 'FollowLinks', 'on')

Input Arguments
sysname — The system to export to a Web view file
character vector or string containing the path to the system | handle to a subsystem or block diagram
| handle to a chart or subchart

Exports the specified system or subsystem and its child systems to a Web view file, with contextual
coverage information for the system displayed on a separate panel of the layered model structure
Web view. By default, child systems of the sysname system are also exported. Use the SearchScope
name-value pair to export other systems, in relation to sysname.
Example: ‘sysname’

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 slwebview_cov

1-111

Example:
slwebview_cov(gcs,'SearchScope','CurrentAndBelow','LookUnderMasks','all','Fol
lowLinks','on')

SearchScope — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by sysname and
all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by the sysname
and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the system or chart
specified by sysname.
Data Types: char

LookUnderMasks — Specifies whether to export the ability to interact with masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in the exported
systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.
Data Types: char

FollowLinks — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.
Data Types: char

FollowModelReference — Specifies whether to access referenced models in a Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.
Data Types: char

ViewFile — Specifies whether to display the Web view in a Web browser when you export
the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.
Data Types: char

1 Functions

1-112

ShowProgressBar — Specifies whether to display the status bar when you export a Web
view
'on' (default) | 'off'

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.
Data Types: char

CovData — cvdata objects to use
cvdata

The coverage data to use, specified as the comma-separated pair consisting of 'CovData' and the
cvdata objects to use.
Example: 'CovData', covdata

Output Arguments
filename — The name of the HTML file for displaying the Web view
character vector or string

Reports the name of the HTML file for displaying the Web view. Exporting a Web view creates the
supporting files, in a folder.

Tips
A Web view is an interactive rendition of a model that you can view in a Web browser. You can
navigate a Web view hierarchically to examine specific subsystems and to see properties of blocks
and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

See Also
slwebview_req

Introduced in R2015a

 slwebview_cov

1-113

tableinfo
Retrieve lookup table coverage information from cvdata object

Syntax
coverage = tableinfo(cvdo, object)
coverage = tableinfo(cvdo, object, ignore_descendants)
[coverage, exeCounts] = tableinfo(cvdo, object)
[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object)

Description
coverage = tableinfo(cvdo, object) returns lookup table coverage results from the cvdata
object cvdo for the model component object.

coverage = tableinfo(cvdo, object, ignore_descendants) returns lookup table coverage
results for object, depending on the value of ignore_descendants.

[coverage, exeCounts] = tableinfo(cvdo, object) returns lookup table coverage results
and the execution count for each interpolation/extrapolation interval in the lookup table block
object.

[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object) returns lookup table
coverage results, the execution count for each interpolation/extrapolation interval, and the execution
counts for breakpoint equality.

Input Arguments
cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant objects
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

Full path or handle to a lookup table block or a model containing a lookup table block.

Output Arguments
brkEquality

A cell array containing vectors that identify the number of times during simulation that the lookup
table block input was equivalent to a breakpoint value. Each vector represents the breakpoints along
a different lookup table dimension.

1 Functions

1-114

coverage

The value of coverage is a two-element vector of form [covered_intervals
total_intervals], the elements of which are:

covered_intervals Number of interpolation/extrapolation intervals
satisfied for object

total_intervals Total number of interpolation/extrapolation
intervals for object

coverage is empty if cvdo does not contain lookup table coverage results for object.

exeCounts

An array having the same dimensionality as the lookup table block; its size has been extended to
allow for the lookup table extrapolation intervals.

Examples
Collect lookup table coverage for the slvnvdemo_cv_small_controller model and determine the
percentage of interpolation/extrapolation intervals coverage collected for the Gain Table block in the
Gain subsystem:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
%Create test spec object
testObj = cvtest(mdl)
%Enable lookup table coverage
testObj.settings.tableExec = 1;
%Simulate the model
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Gain/Gain Table'], 'Handle');
%Retrieve l/u table coverage
cov = tableinfo(data, blk_handle)
%Percent MCDC outcomes covered
percent_cov = 100 * cov(1) / cov(2)

Alternatives
Use the coverage settings to collect lookup table coverage for a model:

1 Open the model.
2 In the Model Editor, select Model Settings on the Modeling tab.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 Under Coverage metrics, select Lookup Table.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model by clicking the Run button and review the results.

 tableinfo

1-115

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | executioninfo |
relationalboundaryinfo

Topics
“Lookup Table Coverage”

Introduced in R2006b

1 Functions

1-116

name property
Class: cv.cvdatagroup
Package: cv

cv.cvdatagroup object name

Values
name

Description
The name property specifies the name of the cv.cvdatagroup object.

Examples
cvdg = cvsim(topModelName);
cvdg.name = 'My_Data_Group';

 name property

1-117

slcovmex
Build coverage-compatible MEX-function from C/C++ code

Syntax
slcovmex(sourceFile1,...,sourceFileN)
slcovmex(sourceFile1,...,sourceFileN,-sldv)
slcovmex(sourceFile1,...,sourceFileN,Name,Value)
slcovmex(argumentSet1,...,argumentSetN)

Description
slcovmex(sourceFile1,...,sourceFileN) compiles level 2 C/C++ MEX S-Function to work
with coverage.

slcovmex(sourceFile1,...,sourceFileN,-sldv) compiles level 2 C/C++ MEX S-Function to
work with coverage, and with support enabled for Simulink Design Verifier.

slcovmex(sourceFile1,...,sourceFileN,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

slcovmex(argumentSet1,...,argumentSetN) combines several mex function calls, each with
one set of arguments.

Input Arguments
sourceFile1,...,sourceFileN — One or more file names
character vectors or strings

Comma-separated source file names with each name specified as a character vector or string.

If the files are not in the current folder, the file names must include the full path or relative path. Use
pwd to find the current folder and cd to change the current folder.
Example: 'file1.c', 'file1.c','file2.c'

argumentSet1,...,argumentSetN — One or more sets of mex arguments
Cell arrays of character vectors or strings

Comma-separated mex argument sets, with each set specified as a cell array.

If you invoke mex multiple times, you can invoke slcovmex once and pass the arguments for each
mex invocation as a cell array of character vectors.

For example, if you use the following sequence of mex commands:

 mex -c file1.c
 mex -c file2.c
 mex file1.o file2.o -output sfcnOutput

You can replace the sequence with one slcovmex invocation:

1 Functions

1-118

slcovmex({'-c','file1.c'},{'-c','file2.c'},{'file1.o','file2.o',
'-output','sfcnOutput'})

Example: {'-c','file1.c'},{'-c','file2.c'},{'file1.o','file2.o','-
output','sfcnOutput'}

-sldv — Option to enable support for Simulink Design Verifier
character vector or string

Option to enable support for your compiled MEX-function in Simulink Design Verifier.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: You can use all the name-value pair arguments that are allowed for the mex function. In
addition, you can use the following options that are specific to model coverage.

-ifile — File ignored for coverage
character vector or string

File name, specified as a character vector or string.
Example: 'myFile.c'

-ifcn — Function ignored for coverage
character vector or string

Function name, specified as a character vector or string.
Example: 'myFunc'

-idir — Folder ignored for coverage
character vector or string

Folder name, specified as a character vector or string.

All files in the folder are ignored for coverage.
Example: 'C:\Libraries\'

See Also
Topics
“Create a Basic C MEX S-Function”
“Templates for C S-Functions”
“Coverage for Custom C/C++ Code in Simulink Models”
“View Coverage Results for Custom C/C++ Code in S-Function Blocks”

Introduced in R2015a

 slcovmex

1-119

Simulink Coverage Settings

2

Coverage Settings

Basic Coverage Settings

• “Coverage Pane Overview” on page 2-3
• “Enable coverage analysis” on page 2-3
• “Scope of coverage analysis” on page 2-3
• “Select Models” on page 2-4
• “Select Subsystem” on page 2-4
• “Record coverage for MATLAB files” on page 2-5

2 Simulink Coverage Settings

2-2

• “Record coverage for C/C++ S-functions” on page 2-6
• “Structural coverage level” on page 2-6
• “Lookup table” on page 2-7
• “Signal range” on page 2-7
• “Signal size” on page 2-8
• “Objectives and constraints” on page 2-8
• “Saturation on integer overflow” on page 2-9
• “Relational boundary” on page 2-9
• “Relational boundary coverage absolute tolerance” on page 2-10
• “Relational boundary coverage relative tolerance” on page 2-10
• “Save last run in workspace variable” on page 2-11
• “Last coverage run variable name” on page 2-11
• “Increment variable name with each simulation” on page 2-12
• “Autosave data file name” on page 2-12
• “Output directory” on page 2-13

Coverage Pane Overview

Specify the Simulink Coverage analysis options.

Enable coverage analysis

Enable coverage analysis. See “Specify Coverage Options”.

Settings

 On
Coverage data is collected during simulation.

 Off (default)
Coverage data is not collected during simulation.

Command-Line Information
Parameter: CovEnable
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Scope of coverage analysis

Specify whether the analysis must collect coverage data for the entire system, or a specific
referenced model, Observer model or subsystem.

Settings

Entire System (default)
Coverage data is collected for the top-level model, as well as all supported subsystems and model
references.

 Coverage Settings

2-3

Referenced Models
Coverage data is collected for one or more referenced models. To specify the referenced models,
use the parameter “Select Models” on page 2-4. You can also specify the top-level model itself.

Subsystem
Coverage data is collected for a specific subsystem. To specify a subsystem, use the parameter
“Select Subsystem” on page 2-4.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovScope
Type: Character vector or string
Value: 'EntireSystem' | 'ReferencedModels' | 'Subsystem'
Default: 'EntireSystem'

Select Models

Specify the referenced models for which you want coverage.

Settings

In the Select Models for Coverage Analysis dialog box, select the referenced models and Observer
models for which you want coverage. You can also select the top-level model. The icon next to the
model name indicates the simulation mode: Normal, SIL, or PIL. Only Observer models in Normal
mode are analyzed for coverage.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• Specify referenced models for “Scope of coverage analysis” on page 2-3.

Command-Line Information

Note Unlike in the user interface, on the command line, you exclude models from coverage instead
of including them.

Parameter: CovModelRefExcluded
Type: Character vector or string
Value: Comma-separated list of model names, for instance, 'mRefA, mRefB, mRefC'. If the same
model is referenced in two simulation modes, you can distinguish between them using :, for instance,
'mRefA:normal, mRefA:sil'.
Default: ''

Select Subsystem

Specify the path to the subsystem for which Simulink Coverage collects coverage data. Specify the
path relative to the top model.

2 Simulink Coverage Settings

2-4

Settings

Select the subsystem for which you want coverage.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Scope of coverage analysis” on page 2-3

Command-Line Information
Parameter: CovPath
Type: Character vector or string
Value: Path to subsystem relative to (and excluding) the top-level Simulink system, for instance,
'Subsys1/subsys2'
Default: '/'. Coverage data is reported for the entire system.

Record coverage for MATLAB files

Enable coverage for MATLAB functions in external MATLAB files. The functions can be invoked from
MATLAB Function blocks or Stateflow charts in your model. See “Model Coverage for MATLAB
Functions”.

Settings

 On (default)
Coverage data is collected for MATLAB functions in external MATLAB files. The functions can be
called from MATLAB Function blocks or Stateflow charts in the model.

 Off
Coverage data is not collected for external MATLAB files.

 Coverage Settings

2-5

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovExternalEMLEnable
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Record coverage for C/C++ S-functions

Enable coverage for C/C++ code in S-Function blocks in your model. See also “Coverage for Custom
C/C++ Code in Simulink Models”.

Settings

 On (default)
Coverage data is collected for C/C++ code in S-Function blocks in the model.

 Off
Coverage data is not collected for C/C++ code used in the model.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Record coverage for this model” on page 2-20 or “Record coverage for referenced models” on

page 2-20 (enter on)

Command-Line Information
Parameter: CovSFcnEnable
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Structural coverage level

Select the type of coverage data collected. See also “Types of Model Coverage”.

Settings

Decision (default)
The analysis computes decision coverage during simulation

Decision coverage analysis checks blocks that perform an action based on whether an operation
evaluates to true or false. For instance, the Abs block first evaluates if the input is less than zero
and acts accordingly. For each operation that can evaluate to true or false, the analysis reports
what fraction of the outcomes was true during simulation and what fraction was false.

See “Decision Coverage (DC)”.
Condition/Decision

The analysis computes condition and decision coverage during simulation.

2 Simulink Coverage Settings

2-6

Condition coverage analysis checks blocks that output a logical combination of their inputs (such
as Logical Operator blocks). For each block, the analysis records what fraction of the inputs was
true during simulation and what fraction was false.

See “Condition Coverage (CC)”.
Modified Condition/Decision Coverage (MCDC)

The analysis computes Modified Condition/Decision Coverage (MCDC) during simulation.

See “Modified Condition/Decision Coverage (MCDC)”.
Block Execution

The analysis checks if each block executes at least once during simulation.

See “Execution Coverage (EC)”.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.
Command-Line Information
Parameter: CovMetricStructuralLevel
Type: Character vector or string
Value: 'BlockExecution' | 'ConditionDecision' | 'Decision' | 'MCDC'
Default: 'Decision'

Lookup table

Enable lookup table coverage. See “Types of Model Coverage”.
Settings

 On
Blocks with lookup tables are checked for coverage. A test case achieves full coverage of a lookup
table if it executes each interval of the table at least once.

 Off (default)
Lookup table coverage is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.
Command-Line Information
Parameter: CovMetricLookupTable
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Signal range

Enable signal range coverage. See “Types of Model Coverage”.
Settings

 On
Maximum and minimum signal values are recorded for each block that has an output signal.

 Coverage Settings

2-7

 Off (default)
Signal range information is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricSignalRange
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Signal size

Enable signal size coverage. See “Types of Model Coverage”.

Settings

 On
Maximum, minimum and allocated signal size are recorded for each block that has a variable-size
output signal. See “Variable-Size Signal Basics”.

 Off (default)
Signal size information is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricSignalSize
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Objectives and constraints

Enable coverage of objectives and constraints specified in Simulink Design Verifier blocks. See
“Types of Model Coverage”.

Settings

 On
Through Simulink Design Verifier blocks, you can specify objectives and constraints in your
model. To check if these objectives are satisfied, you first generate test cases using these blocks.
You can execute these test cases on the original model and record whether the specified objective
was satisfied at least once. To record this coverage, enable this parameter.

For an example, see “Simulink Design Verifier Coverage”.

 Off (default)
Coverage information is not recorded for Simulink Design Verifier blocks.

2 Simulink Coverage Settings

2-8

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricObjectiveConstraint
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Saturation on integer overflow

Enable saturation on integer overflow coverage. See “Types of Model Coverage”.

Settings

 On
For certain blocks, such as the Abs block, you can specify that they must saturate on integer
overflow. If you enable this parameter, the number of times these blocks saturate during
simulation is recorded.

 Off (default)
Saturation on integer overflow information is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricSaturateOnIntegerOverflow
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Relational boundary

Enable relational boundary coverage. See “Types of Model Coverage”.

Settings

 On
Certain blocks such as the Relational Operator or If block use a relational operation. If you enable
this parameter, the coverage analysis checks if these operations are executed with equal (integer)
or almost equal (floating-point) values.

 Off (default)
Relational boundary coverage information is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricRelationalBoundary
Type: Character vector or string

 Coverage Settings

2-9

Value: 'on'|'off'
Default: 'off'

Relational boundary coverage absolute tolerance

Specify the value of absolute tolerance for relational boundary coverage. See “Relational Boundary
Coverage”.

Settings

Enter a floating-point value. See “Floating-Point Numbers”.

Relational boundary coverage checks blocks with relational operations (such as the Relational
Operator block). The analysis checks if the operations are executed with floating-point operands that
differ by at most this value.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Relational boundary” on page 2-9

Command-Line Information
Parameter: CovBoundaryAbsTol
Type: Floating-point number
Value: Absolute tolerance value such as 1e-06
Default: 1e-05

Relational boundary coverage relative tolerance

Specify the value of relative tolerance for relational boundary coverage. See “Relational Boundary
Coverage”.

Settings

Enter a number less than 1.

Relational boundary coverage checks blocks with relational operations (such as the Relational
Operator block). The analysis checks if the operations are executed with floating-point operands that
differ by at most this fraction of the operands.

For instance, if you enter 0.01, the analysis checks if an operation lhs < = rhs in your model is
executed with operands that differ by at most:

0.01 * max(|lhs|,|rhs|)

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Relational boundary” on page 2-9

Command-Line Information
Parameter: CovBoundaryRelTol

2 Simulink Coverage Settings

2-10

Type: Floating-point number
Value: Relative tolerance value such as 0.001
Default: 0.01

Save last run in workspace variable

Save the coverage data from simulation in a MATLAB variable.

You can retrieve coverage information from this variable later. For instance, to retrieve decision
coverage information, use the decisioninfo function. For the full list of functions, see “Manage
Coverage Data”.

Settings

 On
Coverage data is stored in a cvdata object in the MATLAB workspace. Specify the object name
using the parameter “Last coverage run variable name” on page 2-11. Choose to create a new
object for each simulation using the parameter “Increment variable name with each simulation”
on page 2-12.

 Off (default)
Coverage data is not stored in a MATLAB variable.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovSaveSingleToWorkspaceVar
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Last coverage run variable name

Specify a name for the cvdata object that contains coverage results from the last simulation.

Settings

Enter a name, for instance, coverageData.

If you want a new variable to store coverage results for each simulation, use the parameter
“Increment variable name with each simulation” on page 2-12. The new variable name is created by
appending a counter value to the original name, for instance, coverageData1, coverageData2, and
so on.

The default variable name is covdata.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save last run in workspace variable” on page 2-11

 Coverage Settings

2-11

Command-Line Information
Parameter: CovSaveName
Type: Character vector or string
Value: Name to be given to cvdata object
Default: 'covdata'

Increment variable name with each simulation

Create a new variable to store coverage results for each new simulation.

Settings

 On
A new cvdata object stores coverage results for each simulation.

The new variable name is created by appending a counter value to the original variable name
from the first simulation. Specify the original variable name using the parameter “Last coverage
run variable name” on page 2-11.

 Off (default)
Each new simulation overwrites the coverage results from the previous simulation. A single
cvdata object stores the coverage results from the most recent simulation.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save last run in workspace variable” on page 2-11

Command-Line Information
Parameter: CovNameIncrementing
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Autosave data file name

Specify name of .cvt file to which coverage data is automatically saved.

Settings

Enter file name. The default name is $ModelName$_cvdata, where $ModelName$ is the model
name.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save output data” on page 2-23

Command-Line Information
Parameter: CovDataFileName
Type: Character vector or string

2 Simulink Coverage Settings

2-12

Value: Name to be given to .cvt file
Default: '$ModelName$_cvdata'

Output directory

Specify a folder in which coverage output files are saved.

Settings

Enter path to folder. You can enter the absolute path or path relative to the current working folder.

By default, the files are saved in a subfolder slcov_output/$ModelName$ relative to the current
working folder. Here $ModelName$ is the model name.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovOutputDir
Type: Character vector or string
Value: Path to folder
Default: 'slcov_output/$ModelName$'

 Coverage Settings

2-13

Advanced Coverage Settings

• “Restrict coverage recording interval” on page 2-15
• “Coverage interval start time” on page 2-15
• “Coverage interval stop time” on page 2-16
• “Force block reduction off” on page 2-16
• “Treat Simulink logic blocks as short-circuited” on page 2-17
• “MCDC mode” on page 2-17
• “Warn when unsupported blocks exist in model” on page 2-18
• “Coverage filter filename” on page 2-18
• “Coverage metric settings” on page 2-18
• “Record coverage for this model” on page 2-20

2 Simulink Coverage Settings

2-14

• “Record coverage for referenced models” on page 2-20
• “Include top model” on page 2-21
• “Coverage report options” on page 2-21
• “Additional data to include in coverage report” on page 2-23
• “Update coverage results on pause” on page 2-23
• “Save output data” on page 2-23
• “Enable cumulative data collection” on page 2-24
• “Include cumulative data in coverage report” on page 2-24
• “Save cumulative coverage results in workspace variable” on page 2-25
• “Cumulative coverage variable name” on page 2-26
• “Enable limited coverage analysis of accelerated models” on page 2-26

Restrict coverage recording interval

Record coverage only for a specified time interval.

For instance, you might want to restrict model coverage recording if your model has transient effects
early in simulation, or if you need model coverage reported only for a particular model operation.
Settings

 On
Coverage is recorded only for the time interval that you specify. To specify a time interval, use
these parameters:

• “Coverage interval start time” on page 2-15
• “Coverage interval stop time” on page 2-16

 Off (default)
Coverage is recorded for the entire duration of simulation.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.
Command-Line Information
Parameter: CovUseTimeInterval
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Coverage interval start time

Specify when coverage data collection must begin.
Settings

Enter a time value (in seconds).
Dependency

To enable this parameter, select:

 Coverage Settings

2-15

• “Enable coverage analysis” on page 2-3
• “Restrict coverage recording interval” on page 2-15

Command-Line Information
Parameter: CovStartTime
Type: Floating-point number
Value: Time in seconds, for instance, 2
Default: 0

Coverage interval stop time

Specify when coverage data collection must end.

Settings

Enter a time value (in seconds).

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Restrict coverage recording interval” on page 2-15

Command-Line Information
Parameter: CovStopTime
Type: Floating-point number
Value: Time in seconds, for instance, 4
Default: 0

Force block reduction off

Report coverage for every block in the model that is supported for coverage.

Settings

 On (default)
Coverage is recorded for every supported block in the model. The value of the configuration
parameter Block reduction is ignored. See “Block reduction”.

 Off
Coverage is not recorded for blocks that are effectively removed from the model because of block
reduction. For instance, coverage is not recorded for a block that is reduced by dead code
elimination.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovForceBlockReductionOff
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

2 Simulink Coverage Settings

2-16

Treat Simulink logic blocks as short-circuited

Specify that coverage must take into account the order of operands in blocks that perform a logical
operation, for example, Logical Operator blocks.

For instance, if the order of the two inputs to a Logical AND block is taken into account, the second
input is redundant when the first input is false. Therefore, for cases where the first input is false, the
paths that lead to the second input are not considered for coverage.

Settings

 On
Coverage analysis does not consider the input to a logical operation that is rendered redundant
by another input.

 Off (default)
Coverage analysis considers all inputs to a logical operation.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovLogicBlockShortCircuit
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

MCDC mode

Specify the definition of Modified Condition/Decision Coverage (MCDC) to use during coverage
analysis. See “Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage”.

Settings

Masking
Use masking MCDC analysis. To establish the independence of inputs, masking MCDC analysis
does not require that all other inputs be strictly held constant while one input is varied.
Therefore, masking MCDC analysis allows you to satisfy greater number of objectives in a given
simulation.

Unique-Cause
Use unique-cause MCDC analysis.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• Specify Modified Condition/Decision Coverage (MCDC) for “Structural coverage level” on page 2-

6.

Command-Line Information
Parameter: CovMcdcMode
Type: Character vector or string

 Coverage Settings

2-17

Value: 'Masking'|'UniqueCause'
Default: 'Masking'

Warn when unsupported blocks exist in model

Warn when unsupported blocks exist in model.

Settings

 On (default)
Provide a warning when blocks in the model are not supported for coverage analysis.

 Off
Do not provide a warning for unsupported blocks.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovUnsupportedBlockWarning
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Coverage filter filename

Specify a filter file to exclude certain model objects from coverage analysis during simulation.

You can use a command-line API to create filtering rules for blocks. Selection criteria for filtering
includes filtering by individual block ID, filtering for all blocks of the same type, filtering certain
decisions, conditions, and outcomes of a block, and more. You can also filter S-Function C++ code by
code coverage outcome.

For an example of filtering, see:

• User interface: “Create, Edit, and View Coverage Filter Rules”.
• Command line: R2017b release notes for Simulink Coverage.

Settings

Enter full path to .cvf file with filter rules.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovFilter
Type: Character vector or string
Value: Full path to .cvf file
Default:

Coverage metric settings

Specify the type of coverage metric to be recorded. See also “Types of Model Coverage”.

2 Simulink Coverage Settings

2-18

Settings

Enter a sequence of letters that describe the coverage metric types. For example, enter 'dc' to
collect decision and condition coverage.

To specify what coverage type(s) to collect, enter one or more of the letters in the following table as a
single character array.

Note Using CovMetricSettings is not recommended. Use the alternatives in the table instead.

Letter Effect on Coverage Analysis Preferred Alternative
d Collect decision coverage Use the “Structural coverage

level” on page 2-6 parameter
c Collect condition coverage Use the “Structural coverage

level” on page 2-6 parameter
m Collect MCDC coverage Use the “Structural coverage

level” on page 2-6 parameter
t Collect lookup table coverage Use the “Lookup table” on page

2-7 parameter
r Collect signal range coverage Use the “Signal range” on page

2-7 parameter
z Collect signal size coverage Use the “Signal size” on page 2-

8 parameter
o Collect coverage for Simulink

Design Verifier blocks
Use the “Objectives and
constraints” on page 2-8
parameter

i Collect saturation on integer
overflow coverage

Use the “Saturation on integer
overflow” on page 2-9
parameter

b Collect relational boundary
coverage

Use the “Relational boundary”
on page 2-9 parameter

s Specify that coverage must take
into account the order of
operands in blocks that perform
a logical operation

Use the “Treat Simulink logic
blocks as short-circuited” on
page 2-17 parameter.

w Provide a warning when blocks
in the model are not supported
for coverage analysis

Use the “Warn when
unsupported blocks exist in
model” on page 2-18 parameter

e Disables display coverage
results using model coloring

Note CovHighlightResults
has been removed. Include e in
CovMetricSettings to avoid a
warning message.

Dependency

To enable this parameter, select:

 Coverage Settings

2-19

• “Enable coverage analysis” on page 2-3
• One of these: “Record coverage for this model” on page 2-20, “Record coverage for referenced

models” on page 2-20 (enter on) or “Record coverage for MATLAB files” on page 2-5

Command-Line Information
Parameter: CovMetricSettings
Value: Character vector or string where each character signifies a coverage metric. For instance,
'dc' specifies decision and condition coverage.
Default: 'dwe'

Record coverage for this model

Record model coverage data during simulation.

Note This parameter represents a deprecated workflow. Instead use these parameters:

• To enable coverage, use “Enable coverage analysis” on page 2-3.
• To perform coverage analysis for the entire model, use “Scope of coverage analysis” on page 2-3.

Settings

 On (default)
Simulink collects model coverage data during simulation.

 Off
Model coverage data is not collected or reported.

Command-Line Information
Parameter: RecordCoverage
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Record coverage for referenced models

Record coverage data for referenced models during simulation.

Note This parameter represents a deprecated workflow. Instead use these parameters:

• To enable coverage, use “Enable coverage analysis” on page 2-3.
• To perform coverage analysis for referenced models, use “Scope of coverage analysis” on page 2-

3.
• To specify the referenced models, use “Select Models” on page 2-4.

Settings

Enter one of these:

2 Simulink Coverage Settings

2-20

• on: Coverage data is collected for all referenced models and Observer models.
• off: Coverage data is not collected for referenced models.
• filtered: Coverage data is collected for all referenced models and Observer models except

those excluded using the parameter “Select Models” on page 2-4.

Command-Line Information
Parameter: CovModelRefEnable
Type: Character vector or string
Value: 'on'|'off'|'filtered'
Default: 'off'

Include top model

Record coverage for the top-level model in addition to referenced models.

Note This parameter represents a deprecated workflow. Instead use these parameters:

• To enable coverage, use “Enable coverage analysis” on page 2-3.
• To perform coverage analysis for referenced models, use “Scope of coverage analysis” on page 2-

3.
• To include or exclude the top-level model, use “Select Models” on page 2-4.

Settings

 On (default)
Coverage data is collected for the top-level model.

 Off
Coverage data is not collected for the top-level model.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• Specify referenced model for “Scope of coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovIncludeTopModel
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Coverage report options

Specify the formatting of certain aspects of the coverage report (HTML).

Note For an easier way to specify report formatting, see Report from Results Explorer.

 Coverage Settings

2-21

Settings

Enter a space-separated list of flags. The available flags are:

• '-sRT=0' — Do not show report
• '-sVT=1' — Open a web view of the report in a browser. See also “Export Model Coverage Web

View”.
• '-aTS=1' — Show each test in the model summary.
• '-bRG=1' — Show bar graphs in the model summary.

• '-bTC=1' — Use two color bar graphs (red, blue).
• '-hTR=1' — Display hit/count ratio in the model summary.

• '-nFC=0' — Do not report fully covered model objects
• '-scm=1' — Include cyclomatic complexity numbers in summary. See also “Cyclomatic

Complexity”.
• '-bcm=1' — Include cyclomatic complexity numbers in block details.
• '-xEv=0' — Filter Stateflow events from report.
• '-agT=1' — Show aggregated tests information in coverage report.
• '-req=1' — Include linked requirements in aggregated coverage report.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3

Command-Line Information
Parameter: CovHTMLOptions
Type: Character vector or string
Value:
Default:

2 Simulink Coverage Settings

2-22

Additional data to include in coverage report

Include additional model coverage data from cvdata objects in the model coverage report.

Settings

Enter the name of a cvdata object associated with a simulation.

You get a cvdata object when you record coverage and save coverage data in a workspace variable.
See:

• “Last coverage run variable name” on page 2-11
• “Cumulative coverage variable name” on page 2-26

You also get a cvdata object if you run simulation using the cvsim function. See cvsim.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3

Command-Line Information
Parameter: CovCompData
Type: Character vector or string
Value: Name of cvdata object.
Default: No default

Update coverage results on pause

Update coverage report when you pause during simulation. The report is updated with coverage
results up to the current pause or stop time.

Settings

 On (default)
Coverage report is updated when you pause simulation.

 Off
Coverage report is not updated when you pause simulation.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovReportOnPause
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Save output data

Save coverage data results to a file.

 Coverage Settings

2-23

Settings

 On (default)
Coverage data results are saved to a file. Specify the file name using the parameter “Autosave
data file name” on page 2-12.

 Off
Coverage data results are not saved to a file.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovSaveOutputData
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Enable cumulative data collection

Collect model coverage results from successive simulations. See also “Cumulative Coverage Data”.

Note For an easier way to accumulate coverage data from multiple simulations, see “Accumulating
Coverage Data from the Results Explorer”.

Settings

 On (default)
Model coverage data from successive simulations are collected together.

To show the cumulative data in one report, use the parameter “Include cumulative data in
coverage report” on page 2-24. To save the data in one workspace variable, use the parameters
“Save cumulative coverage results in workspace variable” on page 2-25 and “Cumulative
coverage variable name” on page 2-26.

 Off
Model coverage data is retained for the most recent simulation only.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovEnableCumulative
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Include cumulative data in coverage report

Show model coverage results from successive simulations in a single HTML report.

2 Simulink Coverage Settings

2-24

Note For an easier way to accumulate coverage data from multiple simulations, see “Accumulating
Coverage Data from the Results Explorer”.

Settings

 On
The HTML report shows model coverage data from successive simulations.

 Off (default)
The HTML report shows model coverage data from the most recent simulation.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Enable cumulative data collection” on page 2-24

Command-Line Information
Parameter: CovCumulativeReport
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Save cumulative coverage results in workspace variable

Save model coverage data from successive simulations in a single cvdata object in the MATLAB
workspace.

You can retrieve coverage information from this variable later. For instance, to retrieve decision
coverage information, use the decisioninfo function. For the full list of functions, see “Manage
Coverage Data”.

Note For an easier way to accumulate coverage data from multiple simulations, see “Accumulating
Coverage Data from the Results Explorer”.

Settings

 On
A single cvdata object stores model coverage data from successive simulations. See “Cumulative
Coverage Data”.

Specify the variable name using the parameter “Cumulative coverage variable name” on page 2-
26.

 Off (default)
The cvdata object stores model coverage data from the most recent simulation.

Dependency

To enable this parameter, select:

 Coverage Settings

2-25

• “Enable coverage analysis” on page 2-3
• “Enable cumulative data collection” on page 2-24

Command-Line Information
Parameter: CovSaveCumulativeToWorkspaceVar
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Cumulative coverage variable name

Specify the name of the cvdata object that saves coverage data from successive simulations.

Note For an easier way to accumulate coverage data from multiple simulations, see “Accumulating
Coverage Data from the Results Explorer”.

Settings

Enter variable name, for instance, cumulativeCoverageData.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save cumulative coverage results in workspace variable” on page 2-25
• “Enable cumulative data collection” on page 2-24

Command-Line Information
Parameter: CovCumulativeVarName
Type: Character vector or string
Value: Name to be given to cvdata object
Default: 'covCumulativeData'

Enable limited coverage analysis of accelerated models

Collect limited coverage for accelerated models. You can collect the following coverage metrics in
accelerator mode:

• Stateflow elements — all coverage metrics that are supported for normal mode
• MATLAB function blocks — all coverage metrics that are supported for normal mode
• Other Simulink blocks — only execution coverage

Settings

 On (default)
Model coverage will be collected for models in accelerator mode.

Note Only execution coverage can be collected on Simulink blocks when the model simulation
mode is set to accelerator.

2 Simulink Coverage Settings

2-26

 Off
Model coverage will not be collected for models in accelerator mode.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovAccelSimSupport
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

 Coverage Settings

2-27

Classes

3

slcoverage.BlockSelector class
Package: slcoverage

Select blocks for coverage filter

Description
Specify block selection criteria for a filter rule.

Construction
sel = slcoverage.BlockSelector(type,element) specifies the type of model elements to
create the filter rule for and returns an slcoverage.BlockSelector object.

Input Arguments

type — Block selector type
slcoverage.BlockSelectorType value

Type of model element to select, specified as one of these values:

• slcoverage.BlockSelectorType.BlockInstance — An instance of a block.
• slcoverage.BlockSelectorType.BlockType — All blocks of the specified block type.
• slcoverage.BlockSelectorType.Chart — A Stateflow chart.
• slcoverage.BlockSelectorType.MaskType — Blocks that use the specified mask type.
• slcoverage.BlockSelectorType.State — A Stateflow state.
• slcoverage.BlockSelectorType.StateAllContent — Stateflow state and its contents.
• slcoverage.BlockSelectorType.StateflowFunction — A Stateflow function.
• slcoverage.BlockSelectorType.Subsystem — A subsystem block.
• slcoverage.BlockSelectorType.SubsystemAllContent — A subsystem and its contents.
• slcoverage.BlockSelectorType.TemporalEvent — A Stateflow temporal event.
• slcoverage.BlockSelectorType.Transition — A Stateflow transition.

Example: slcoverage.BlockSelectorType.Transition

element — Model element to select
property name | handle | Simulink ID

Model element to select, specified as a property name of the element, its handle, or its Simulink
identifier. Use a handle or ID for selector types that select an instance. Use a property name, such as
the value of a block's 'BlockType' property, to select multiple model elements.
Example: 'slcoverage_lct_bus:18', 'RelationalOperator'

Attributes:

SetAccess
protected

3 Classes

3-2

Data Types: char | string | handle | integer

Outputs
sel — Selector object
slcoverage.BlockSelector object | array of slcoverage.BlockSelector objects

Selector object, returned as an slcoverage.BlockSelector object or array of
slcoverage.BlockSelector objects.

Properties
ConstructorCode — Code used to create this selector object
character array

Code used to create this selector object, returned as a character vector.

Attributes
SetAccess

protected

Description — Description of the selector
character vector

Description of the selector, returned as a character vector. Simulink Coverage creates the description
based on the selector.

Attributes
SetAccess

protected

Id — Model element identifier
Simulink ID (default) | property | handle

Model element identifier, specified as the property name of the element, the handle to an element, or
the Simulink identifier of the element. Use a handle or ID for selector types that select an instance.
Use a property name, such as the value of the 'BlockType' property of a block, to select multiple
model elements.

Attributes
SetAccess

protected
Data Types: char | string | handle | integer

Type — Block selector type
slcoverage.BlockSelectorType value

This property is read-only.

Selector type, returned as one of these slcoverage.BlockSelectorType values:

• BlockInstance

 slcoverage.BlockSelector class

3-3

• BlockType
• Chart
• MaskType
• State
• StateAllContent
• StateflowFunction
• Subsystem
• SubsystemAllContent
• TemporalEvent
• Transition

Methods
allSelectors Selectors for model or code element

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Add Block Selector Rules to a Filter

Select multiple blocks to add a rule for and an instance of a block to add a rule for. The resulting filter
has two rules. You can simulate your model for code coverage using the filter to see the effect.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'slcoverage_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricStructuralLevel','MCDC','RecordCoverage','on');

Select blocks that have the same block type as the upper GE input block to add a filter rule for.
type = get_param('slcoverage_lct_bus/slCounter/upper GE input','BlockType');
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,type);

Create a filter object, create a rule based on the selector, and add the rule to the filter.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

Select a block instance and add a rule for the block instance to the filter. This rule uses the default
filter mode of Justify.
id = Simulink.ID.getSID('slcoverage_lct_bus/slCounter/And');
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);
rule = slcoverage.FilterRule(bl,'Edge case');
filt.addRule(rule);

Save the filter as blfilter. Simulate the model for code coverage. Add the filter file as the value to
the filter property of the resulting cvdata object. Then generate the coverage report.

3 Classes

3-4

filt.save('blfilter');
csim = cvsim(modelName);
csim.filter = 'blfilter';
cvhtml('cov',csim);

Examine the HTML report to see information about the blocks that you added rules for.

See Also
getSimulinkBlockHandle | cv.cvdatagroup | slcoverage.Filter |
slcoverage.FilterRule | slcoverage.MetricSelector | slcoverage.SFcnSelector

Topics
“Top-Level Model Coverage Report”
“Simulink Identifiers”
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

 slcoverage.BlockSelector class

3-5

slcoverage.CodeSelector class
Package: slcoverage

Select custom C or C++ code for coverage filter

Description
Use objects of the slcoverage.CodeSelector class to specify custom C or C++ code selection
criteria for a filter rule.

The slcoverage.CodeSelector class is a handle class.

Creation
sel = slcoverage.CodeSelector(type,fileName) creates CodeSelector object of the
specified type based on the specified fileName and sets the Type and FileName properties.

sel = slcoverage.CodeSelector(type,fileName,functionName) creates a CodeSelector
object based on the specified C or C++ functionName in the file and sets the FunctionName
property.

sel = slcoverage.CodeSelector(type,fileName,functionName,expr,exprIndex)
creates a CodeSelector object for the specified expression and expression index and sets the Expr
and ExprIndex properties.

sel =
slcoverage.CodeSelector(type,fileName,functionName,expr,exprIndex,outcomeInde
x) creates a CodeSelector object based on the specified coverage outcome and sets the
OutcomeIndex property.

sel =
slcoverage.CodeSelector(type,fileName,functionName,expr,exprIndex,outcomeInde
x,parentExprIndex) creates a CodeSelector object based on the specified coverage outcome
that belongs to an expression owned by parentExprIndex and sets the DecOrCondIndex property
to parentExprIndex.

Properties
Type — Type of custom C or C++ code to select
slcoverage.CodeSelectorType value

Type of custom C or C++ code to select, specified as an enumeration of the
slcoverage.CodeSelectorType class:

Example: slcoverage.CodeSelectorType.Function

3 Classes

3-6

Attributes

SetAccess protected

Data Types: slcoverage.CodeSelectorType

FileName — C or C++ file to select
character array | string array

C or C++ file to select, specified as a character array or string array.
Example: 'myfile.c'

Attributes

SetAccess protected

Data Types: char | string

FunctionName — C or C++ function to select
character array | string array

C or C++ function to select, specified as a character array or string array.
Example: 'counterbusFcn'

Attributes

SetAccess protected

Data Types: char | string

Expr — Decision or condition expression to select
character array | string array

Decision or condition expression to select, specified as a character array or string array.
Example: 'x | y'

Attributes

SetAccess protected

Data Types: char | string

ExprIndex — Expression index
integer

Expression index, specified as an integer. If you are filtering an outcome, this property is the index of
the expression that owns that outcome. If you are filtering an expression, this property is the index of
that expression inside the body of the function.
Example: 2

Attributes

SetAccess protected

Data Types: single | double | int

 slcoverage.CodeSelector class

3-7

OutcomeIndex — Index of outcome to select
integer

Index of outcome to select, specified as an integer:

Example: 2

Attributes

SetAccess protected

Data Types: single | double | int

DecOrCondIndex — Parent expression index
integer

Parent expression index, specified as an integer. Use this input when you are filtering an expression
owned by a parent decision or condition. This property is the index of the parent decision or condition
relative to the function.
Example: 2

Attributes

SetAccess protected

Data Types: single | double | int

ConstructorCode — Code used to create this selector object
character array

Code used to create this selector object, returned as a character vector.

Attributes

SetAccess protected

Description — Description of the selector
character vector

Description of the selector, returned as a character vector. Simulink Coverage creates the description
based on the selector.

Attributes

SetAccess protected

Id — Model element identifier
Simulink ID (default) | property | handle

This property is empty for the slcoverage.CodeSelector class.

Attributes

SetAccess protected

Data Types: char | string | handle | integer

3 Classes

3-8

Methods
Public Methods
allSelectors Selectors for model or code element

Examples

Add Code Selector Rules to a Filter

This example shows how to select custom C or C++ code for which you want to add a filter rule.

Load the model.

modelName = 'slcovCCallerExample';
Simulink.importExternalCTypes('my_func.h','EnumClass','dynamic');
load_system(modelName)

Configure coverage settings using a Simulink.SimulationInput object.

covSet = Simulink.SimulationInput(modelName);
covSet = covSet.setModelParameter('CovEnable','on');
covSet = covSet.setModelParameter('CovMetricStructuralLevel','MCDC');
covSet = covSet.setModelParameter('CovSFcnEnable','on');
covSet = covSet.setModelParameter('CovSaveSingleToWorkspaceVar','on');
covSet = covSet.setModelParameter('CovSaveName','covData');
covSet = covSet.setModelParameter('SimAnalyzeCustomCode','on');

Simulate the model using covSet object as the input.

simOut = sim(covSet);
covData = simOut.covData;

Create a selector object to filter the custom C function timesK.

sel = slcoverage.CodeSelector(slcoverage.CodeSelectorType.Function, 'my_func.c', 'timesK');

Create a filter object and create a rule based on the selector, then add the rule to the filter.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(sel,'Tested elsewhere',...
 slcoverage.FilterMode.Exclude);
addRule(filt,rule);
setFilterName(filt,'Code Filter')

Save the filter as codefilter and add it to the cvdata object for my_func.c. Because the coverage
data is stored in a cv.cvdatagroup object, use the get method to set the property.

save(filt,'codefilter');
covData.get('my_func.c').filter = 'codefilter';

Generate a coverage report.

cvhtml('codeCovReport',covData)

Review the report. Under Custom Code File(s), click my_func.c and find the filter rule that you
added under Objects Filtered from Coverage Analysis.

 slcoverage.CodeSelector class

3-9

Create a C Code Outcome Selector

This example shows how to use an slcoverage.CodeSelector object to filter a code outcome in a
custom C or C++ program called by a C Caller block.

Open the Model and Enable Coverage Analysis

Open the model.

modelName = 'slcovCCallerExample';
Simulink.importExternalCTypes('my_func.h','EnumClass','dynamic');
load_system(modelName)

Configure coverage settings using a Simulink.SimulationInput object.

covSet = Simulink.SimulationInput(modelName);
covSet = covSet.setModelParameter('CovEnable','on');
covSet = covSet.setModelParameter('CovMetricStructuralLevel','ConditionDecision');
covSet = covSet.setModelParameter('CovSFcnEnable','on');
covSet = covSet.setModelParameter('CovSaveSingleToWorkspaceVar','on');
covSet = covSet.setModelParameter('CovSaveName','covData');

Simulate the model using covSet as the input.

simOut = sim(covSet);
covData = simOut.covData;

The simulation returns the coverage data as a cv.cvdatagroup object when both the model and
custom code are analyzed for coverage. To extract the code coverage data, use the get method of the
cvdatagroup class.

codeCovData = get(covData,'my_func.c');

Justify the Missing Outcome

In this example, you justify the F outcome of the inputGElower condition in the (u1-
>limits.upper_saturation_limit >= limit) && inputGElower decision, which is located
inside the counterbusFcn function in the my_func.c source file.

3 Classes

3-10

Create a selector object using slcoverage.CodeSelector. The first input is a CodeSelectorType
enumeration. To justify a condition outcome, use a ConditionOutcome enumeration. The second
input is the code source file, my_func.c. The third input is the name of the function that contains the
outcome, counterbusFcn. The fourth input is the expression which contains the outcome, (u1-
>limits.upper_saturation_limit >= limit) && inputGElower. The fifth input is the index
of the expression that owns the outcome. In this case, inputGElower is the second condition within
its parent condition, so this input is 2. The sixth input is the condition outcome index, which is 1 for
the F outcome of a Boolean expression. The seventh input is the index of the parent decision or
condition, which is 1 for (u1->limits.upper_saturation_limit >= limit) &&
inputGElower because it is the first decision in the function.

enum = slcoverage.CodeSelectorType.ConditionOutcome;
sel = slcoverage.CodeSelector(enum,'my_func.c','counterbusFcn','(u1->limits.upper_saturation_limit >= limit) && inputGElower',2,1,1);

Create a Filter object and a FilterRule object and apply the rule to the filter.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(sel,'condition does not apply');
addRule(filt,rule);

Save the filter to a filter file and then apply the filter to the cvdata object.

save(filt,'codeOutcomeFilter');
codeCovData.filter = 'codeOutcomeFilter';

Review the Coverage Report

Verify the outcome is filtered by generating a coverage report using cvhtml.

cvhtml('filteredCodeCovReport',codeCovData)

 slcoverage.CodeSelector class

3-11

See Also
cv.cvdatagroup | slcoverage.Filter | slcoverage.FilterRule |
slcoverage.MetricSelector | slcoverage.SFcnSelector | cvdata

Topics
“Top-Level Model Coverage Report”
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2018b

3 Classes

3-12

slcoverage.Filter class
Package: slcoverage

Coverage filter set

Description
Use an object of the slcoverage.Filter class to filter out unsatisfied coverage objectives by
creating rules using the slcoverage.FilterRule class.

The slcoverage.Filter class is a handle class.

Creation
Description

filt = slcoverage.Filter() creates an slcoverage.Filter object.

filt = slcoverage.Filter(filterFile) creates an slcoverage.Filter object that contains
the filter rules saved in filterFile.

Input Arguments

filterFile — Filter file
path name

Filter file in CVF format, specified as a character array of the path name to the file, or a cell array of
character arrays. You do not need to include the file extension.
Example: 'myfilt', 'filters\myfilt', {'myfilt1', 'myfilt2'}

Methods
Public Methods
addRule Add coverage filtering rule to filter
removeRule Remove rule from filter rule set
rules Rules for filter
setFilterName Set name of coverage filter object
filterName Get name of coverage filter object
setFilterDescription Set description of coverage filter object
filterDescription Get description of coverage filter object
save Save coverage filter object to coverage filter file

Examples

Add Rule to a Filter File

This example shows how to add a rule to a coverage filter file.

 slcoverage.Filter class

3-13

Create a filter object and use the BlockSelector class to create a BlockSelector object for the
Saturation block in the slvnvdemo_covfilt model.

filt = slcoverage.Filter;
blockSel = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,...
 'slvnvdemo_covfilt/Saturation');

Create a rule to filter the Saturation block using slcoverage.FilterRule with the selector as the
first input and the rationale as the second input.

rule = slcoverage.FilterRule(blockSel,'Edge case');

Use the addRule method of the slcoverage.Filter class to add the rule to the filter object.

addRule(filt,rule);

Save the filter with the new rule to a filter file using the save method of the slcoverage.Filter
class.

save(filt,'myFilterFile')

Create and Use a Coverage Filter Object

This example shows how to create a filter object and add a rule to exclude a subsystem from coverage
analysis.

Open the slvnvdemo_covfilt model. Use a SimulationInput object to enable coverage
recording and specify coverage settings.

modelName = 'slvnvdemo_covfilt';
load_system(modelName)
simIn = Simulink.SimulationInput(modelName);
simIn = setModelParameter(simIn,'CovEnable','on');
simIn = setModelParameter(simIn,'CovMetricStructuralLevel','MCDC');
simIn = setModelParameter(simIn,'CovSaveSingleToWorkspaceVar','on');
simIn = setModelParameter(simIn,'CovSaveName','covData');

Simulate the model. The coverage data is stored in the value supplied for the CovSaveName property.

simOut = sim(simIn);
covData = simOut.covData;

You can filter a block by using the slcoverage.BlockSelector class. To exclude the Switchable
config subsystem, use slcoverage.BlockSelectorType.SubsystemAllContent as the first
input.

subsysSel = slcoverage.BlockSelector(...
 slcoverage.BlockSelectorType.SubsystemAllContent,...
 'slvnvdemo_covfilt/Switchable config');

Create the filter rule by passing the selector, rationale, and the exclude filter mode as inputs.

rule = slcoverage.FilterRule(subsysSel,...
 'Unused configuration',...
 slcoverage.FilterMode.Exclude);

Create an slcoverage.Filter object and then add the rule to it.

3 Classes

3-14

filt = slcoverage.Filter;
addRule(filt,rule);

Save the filter to a file called blockFilter.cvf. To create a report that uses this coverage filter, add
the filter file as the value to the filter property of covData, and create a report called
coverageData.html using covData.

save(filt,'blockFilter')
covData.filter = 'blockFilter';
cvhtml('coverageData',covData)

Use Multiple Coverage Filter Files for a Simulation

If you have multiple filter files that each contain their own set of rules, you can apply them to a
coverage result set by creating a cell array of the filter file names or path names. In this example, you
apply two filter files to a single cvdata object and then view the report to see that the filters are
applied.

Load the slvnvdemo_covfilt model into memory.

modelName = 'slvnvdemo_covfilt';
load_system(modelName)

Set the coverage settings by using a Simulink.SimulationInput object and simulate the model
using sim.

simIn = Simulink.SimulationInput(modelName);
simIn = setModelParameter(simIn,'CovEnable','on');
simIn = setModelParameter(simIn,'CovMetricStructuralLevel','MCDC');
simIn = setModelParameter(simIn,'CovSaveSingleToWorkspaceVar','on');
simIn = setModelParameter(simIn,'CovSaveName','covData');
simOut = sim(simIn);

Apply the two filters to the cvdata object by assigning them to the filter property as a cell array.

covData.filter = {'filter_1','filter_2'};
cvhtml('twoFiltersCovData',covData);

You can see the applied coverage filters in the Objects Filtered from Coverage Analysis section of
the coverage report.

See Also
slcoverage.MetricSelector | slcoverage.BlockSelector | slcoverage.SFcnSelector |
slcoverage.FilterRule

Topics
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

 slcoverage.Filter class

3-15

slcoverage.FilterRule class
Package: slcoverage

Create coverage filtering rule

Description
Create a coverage filtering rule that includes the selector and the rationale for filtering.

Construction
rule = slcoverage.FilterRule(selector,rationale) creates the filter rule object rule
using the specified selector and rationale text.

rule = slcoverage.FilterRule(selector,rationale,mode) specifies whether the filter
mode for this rule is justify or exclude. You can use only justify (the default) with metric selectors.

Input Arguments

selector — Selector for this rule
slcoverage.BlockSelector object | slcoverage.MetricSelector object |
slcoverage.SFcnSelector object

Selector that determines the objects that this rule applies to, specified as an
slcoverage.BlockSelector object, slcoverage.MetricSelector object, or
slcoverage.SFcnSelector object.

rationale — Reason for adding the rule
character vector or string

Reason for adding the rule, specified as a character vector or string.
Example: 'value is never less than 0'

mode — Filter mode
slcoverage.FilterMode.Justify (default) | slcoverage.FilterMode.Exclude

Filter mode for this rule, specified as slcoverage.FilterMode.Justify or
slcoverage.FilterMode.Exclude.

Properties
Mode — Filter mode
Justify (default) | Exclude

This property is read-only.

Filter mode that was specified for this rule, returned as Justify or Exclude.

Rationale — Rationale text specified for this rule
character vector or string

3 Classes

3-16

This property is read-only.

Rationale text specified for this rule, returned as a character vector.

Selector — Selector object for this rule
slcoverage.BlockSelector object | slcoverage.MetricSelector object |
slcoverage.SFcnSelector object

This property is read-only.

Selector object for this rule, returned as a slcoverage.BlockSelector object,
slcoverage.SFcnSelector object, or slcoverage.SFcnSelector object.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create Rule That Uses a Block Selector

Create a block selector object and a rule for it. Then add the rule to a filter.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'slcoverage_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricStructuralLevel','MCDC','RecordCoverage','on');

Select blocks with block type 'RelationalOperator' to add a filter rule for.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');

Create a filter object, create a rule, and add the rule to the filter. This rule excludes the selection from
coverage analysis.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

See Also
slcoverage.Filter | slcoverage.MetricSelector | slcoverage.BlockSelector |
slcoverage.SFcnSelector

Topics
“Coverage Filter Rules and Files”
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

 slcoverage.FilterRule class

3-17

slcoverage.MetricSelector class
Package: slcoverage

Select metric criterion for coverage filter

Description
Use an object of the slcoverage.MetricSelector class to specify metric selection criteria for a
coverage filter rule.

The slcoverage.MetricSelector class is a handle class.

Construction
sel = slcoverage.MetricSelector(type,element,objIndex,outIndex) creates a metric
selector object of type type for the specified model element element at the objective index
objIndex and outcome index outIndex.

You can only create a justify rule for a metric selector. For more information about the difference
between justification and exclusion, see “Coverage Filtering”.

For more information on the condition and decision coverage tables produced in the report, see “Top-
Level Model Coverage Report”.

Input Arguments

type — Metric selector type
slcoverage.MetricSelectorType.ConditionOutcome |
slcoverage.MetricSelectorType.DecisionOutcome |
slcoverage.MetricSelectorType.MCDCOutcome |
slcoverage.MetricSelectorType.RelationalBoundaryOutcome |
slcoverage.MetricSelectorType.SaturationOverflowOutcome

Metric selector type, specified as:

• slcoverage.MetricSelectorType.ConditionOutcome objects select condition metric
objective outcomes.

• slcoverage.MetricSelectorType.DecisionOutcome objects select decision metric
objective outcomes.

• slcoverage.MetricSelectorType.MCDCOutcome objects select MCDC metric objective
outcomes.

• slcoverage.MetricSelectorType.RelationalBoundaryOutcome objects select outcome
metrics related to relational boundary outcomes.

• slcoverage.MetricSelectorType.SaturationOverflowOutcome objects select outcome
metrics related to saturation on integer overflow outcomes.

element — Model element to select
handle | Simulink ID

Model element to select, specified as a handle or the Simulink identifier of the model element.

3 Classes

3-18

Example: 'slcoverage_lct_bus:18'

objIndex — Index of objective
integer

Index of the objective that you want to filter, specified as an integer.
Example: 1

outIndex — Index of outcome
integer

Index of the outcome that you want to filter, specified as an integer.
Example: 2

Properties
ConstructorCode — Code used to create this selector object
character array

Code used to create this selector object, returned as a character vector.

Attributes
SetAccess

protected

Description — Description of the selector
character vector

Description of the selector, returned as a character vector. Simulink Coverage creates the description
based on the selector.

Attributes
SetAccess

protected

Id — Element identifier
Simulink ID (default) | handle

This property is read-only.

Identifier of the model element, returned as character vector of the Simulink ID or a handle.

ObjectiveIndex — Index of objective
integer

This property is read-only.

Index of the objective for this selector, returned as an integer.

OutcomeIndex — Index of outcome
integer

This property is read-only.

 slcoverage.MetricSelector class

3-19

Index of the outcome for this selector, returned as an integer.

Type — Metric selector type
ConditionOutcome | DecisionOutcome | MCDCOutcome | RelationalBoundaryOutcome |
SaturationOverflowOutcome

This property is read-only.

Selector type, returned as ConditionOutcome, DecisionOutcome, MCDCOutcome,
RelationalBoundaryOutcome, or SaturationOverflowOutcome.

Outputs
sel — Selector object
slcoverage.MetricSelector object | array of slcoverage.MetricSelector objects

Selector object, returned as an slcoverage.MetricSelector object or array of
slcoverage.MetricSelector objects.

Methods
Public Methods

allSelectors Selectors for model or code element

Examples

Add Metric Selector Rule to a Filter

This example shows how to select a metric and add a rule that uses that metric. In this example, you
create a rule to justify an unsatisfied decision for a Saturation block.

Open the Model and Enable Coverage Analysis

Load the model into memory.

modelName = 'slvnvdemo_covfilt';
load_system(modelName);

Use a Simulink.SimulationInput object to configure coverage for the model.

covSet = Simulink.SimulationInput(modelName);
covSet = covSet.setModelParameter('CovEnable','on');
covSet = covSet.setModelParameter('CovMetricStructuralLevel','MCDC');
covSet = covSet.setModelParameter('CovSFcnEnable','on');
covSet = covSet.setModelParameter('StopTime','20');
covSet = covSet.setModelParameter('CovSaveSingleToWorkspaceVar','on');
covSet = covSet.setModelParameter('CovSaveName','covData');

Simulate the model using the SimulationInput object as the input.

simOut = sim(covSet);

3 Classes

3-20

View the coverage results before applying a filter. You can access the coverage using decisioninfo,
or you can view the HTML report using cvhtml.

covInitial = decisioninfo(covData,[modelName,'/Saturation']);
percentInitial = 100 * covInitial(1)/covInitial(2)

percentInitial =

 50

cvhtml('covReportInitial',covData)

Both decisioninfo and cvhtml show the same result of 50% decision coverage. If you don't intend
your current tests to exercise this outcome, you can justify the outcome so it is no longer reported as
missing coverage.

In this example, we justify the false decision outcome of the input > lower limit decision
objective in the Saturation block.

 slcoverage.MetricSelector class

3-21

Justify the Missing Condition Objective

MetricSelector objects accept the block path or the block handle as the second input. Get the
block handle of the Saturation block by using getSimulinkBlockHandle.

id = getSimulinkBlockHandle([modelName,'/Saturation']);

Because the objective being justified is a decision outcome, the first input to the metric selector
constructor is slcoverage.MetricSelectorType.DecisionOutcome. The second input is the
block handle. The last two are the index of the objective to justify and the index of the outcome of
that objective, respectively.

Because the input > lower limit decision objective is the first objective for the Saturation block,
its objective index is 1. Because the false outcome of this objective is the first outcome, its outcome
index is also 1. Therefore, the last two inputs are 1,1.

metr = slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome,id,1,1);

Create a filter and rule. In this case, we use the default filter mode of justify. Then add the rule to the
filter using the addRule method.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(metr,'Expected result');
filt.addRule(rule);

Save the filter to a filter file using the save method. Then apply the filter file to the cvdata object by
assigning the filter property to the new filter file.

filt.save('metrfilter');
covData.filter = 'metrfilter';

Re-generate the coverage results for the Saturation block using the new filtered cvdata object.

covFiltered = decisioninfo(covData,[modelName,'/Saturation']);
percentInitial = 100 * covFiltered(1)/covFiltered(2)

percentInitial =

 75

cvhtml('covReportFiltered',covData)

3 Classes

3-22

In the HTML report, the missing decision outcome is highlighted to indicate that it is justified.
Decision coverage for the Saturation block is now 75%.

See Also
slcoverage.BlockSelector | getSimulinkBlockHandle | slcoverage.Filter |
slcoverage.FilterRule | slcoverage.SFcnSelector

Topics
“Top-Level Model Coverage Report”
“Simulink Identifiers”
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

 slcoverage.MetricSelector class

3-23

slcoverage.Selector class
Package: slcoverage

Get selectors of all types

Description
Use the slcoverage.Selector class with the allSelectors method to return all types of the
selectors for a block.

Properties
ConstructorCode — Code used to create this selector object
character array

Code used to create this selector object, returned as a character vector.

Attributes
SetAccess

protected

Description — Description of the selector
character vector

Description of the selector, returned as a character vector. Simulink Coverage creates the description
based on the selector.

Attributes
SetAccess

protected

Id — Element identifier
Simulink ID (default) | handle

This property is read-only.

Identifier of the model element, returned as character vector of the Simulink ID or a handle.

Type — Selector type
selector type value

This property is read-only.

Selector type, returned as a selector type of the corresponding selector.

Methods

allSelectors Selectors for model or code element

3 Classes

3-24

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Get All Selectors

This example shows how to get all the selectors for an And block and then add a rule to justify or
exclude a selector. Metric selectors can only be justified.

Load the model and set coverage settings

modelName = 'slvnvdemo_covfilt';
load_system(modelName);
set_param(modelName,'CovEnable','on','CovMetricStructuralLevel','MCDC');

First, get the block handle for the And block.

id = getSimulinkBlockHandle([modelName,'/Saturation']);

Get the selectors using the block handle.

sel = slcoverage.Selector.allSelectors(id)

sel =

 1x10 heterogeneous Selector (BlockSelector, MetricSelector) array with properties:

 Description
 Type
 Id
 ConstructorCode

The block has ten selectors. You can index into each one to see their contents. In this example, you
want to justify the sixth selector.

sel(6)

ans =

 MetricSelector with properties:

 ObjectiveIndex: 2
 OutcomeIndex: 2
 Description: 'T outcome of input > upper limit in Saturate block "Saturation"'
 Type: DecisionOutcome
 Id: 'slvnvdemo_covfilt:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome, 'slvnvdemo_covfilt:5', 2, 2)'

Create a justify rule, then create a filter object and add the rule to it.

 slcoverage.Selector class

3-25

rule = slcoverage.FilterRule(sel(6),'Expected result');
filt = slcoverage.Filter;
filt.addRule(rule);

Save the filter and generate a coverage report.

filt.save('metrfilter');
csim = cvsim(modelName);
csim.filter = 'metrfilter';
cvhtml('cov',csim,'-sRT=0');

See Also
slcoverage.MetricSelector | slcoverage.BlockSelector | slcoverage.CodeSelector |
slcoverage.SFcnSelector

Topics
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

3 Classes

3-26

slcoverage.SFcnSelector class
Package: slcoverage

Select S-function criterion for filtering rule

Description
Use objects of the slcoverage.SFcnSelector class to specify the S-function selection criteria for a
filter rule.

The slcoverage.SFcnSelector class is a handle class.

Creation
sel = slcoverage.SFcnSelector(type,id) creates an SFcnSelector object of the specified
type based on S-Function block id and sets the Type and Id properties.

sel = slcoverage.SFcnSelector(type,id,fileName) creates an SFcnSelector object
based on the specified C or C++ fileName, and sets the FileName property.

sel = slcoverage.SFcnSelector(type,id,fileName,functionName) creates an
SFcnSelector object based on the specified C or C++ functionName in the specified file and sets
the FunctionName property.

sel = slcoverage.SFcnSelector(type,id,fileName,functionName,expr,exprIndex)
creates an SFcnSelector object based on the specified expression and exprIndex and sets the
Expr and ExprIndex properties.

sel =
slcoverage.SFcnSelector(type,id,fileName,functionName,expr,exprIndex,outcomeI
ndex) creates an SFcnSelector object based on the specified coverage outcome and sets the
OutcomeIndex property.

sel =
slcoverage.SFcnSelector(type,id,fileName,functionName,expr,exprIndex,outcomeI
ndex,parentExprIndex) creates an SFcnSelector object based on the specified coverage
outcome whose parent is another expression specified by parentExprIndex and sets the
DecOrCondIndex property.

Properties
Type — Type of S-function
slcoverage.SFcnSelectorType enumeration

Type of S-function to select, specified as an enumeration of the slcoverage.SFcnSelectorTjype
class:

Data Types: slcoverage.SFcnSelectorType

 slcoverage.SFcnSelector class

3-27

Id — Model element identifier
Simulink ID (default) | property | handle

Model element identifier, specified as the property name of the element, the handle to an element, or
the Simulink identifier of the element. Use a handle or ID for selector types that select an instance.
Use a property name, such as the value of the 'BlockType' property of a block, to select multiple
model elements.
Attributes

SetAccess protected

Data Types: char | string | handle | integer

FileName — C or C++ file to select
character array | string array

C or C++ file to select, specified as a character array or string array.
Example: 'myfile.c'
Attributes:

SetAccess protected

Data Types: char | string

FunctionName — C or C++ function to select
character array | string array

C or C++ function to select, specified as a character array or string array.
Example: 'counterbusFcn'
Attributes:

SetAccess protected

Data Types: char | string

Expr — Expression to select
character array | string array

Expression to select, specified as a character array or string array.
Example: 'inputGElower'
Attributes:

SetAccess protected

Data Types: char | string

ExprIndex — Expression index
scalar

Expression index, specified as an integer. If you are filtering an outcome, this property is the index of
the expression that owns that outcome. If you are filtering an expression, this property is the index of
that expression inside the body of the function.

3 Classes

3-28

Example: 2

Attributes:

SetAccess protected

Data Types: single | double | int

OutcomeIndex — Index of outcome to select
integer

Index of outcome to select, specified as an integer:

Example: 2

Attributes

SetAccess protected

Data Types: single | double | int

DecOrCondIndex — Parent expression index
integer

Parent expression index, specified as an integer. Use this input to filter an expression that is owned
by a parent decision or condition; this is the index of the parent decision or condition relative to the
function.
Example: 2

Attributes

SetAccess protected

Data Types: single | double | int

Description — Description of the selector
character vector

Description of the selector, returned as a character vector. Simulink Coverage creates the description
based on the selector.

Attributes

SetAccess protected

ConstructorCode — Code used to create this selector object
character array

Code used to create this selector object, returned as a character vector.

Attributes

SetAccess protected

 slcoverage.SFcnSelector class

3-29

Methods
Public Methods
allSelectors Selectors for model or code element

Examples

Create an S-Function Selector

This example shows how to create an S-Function selector.

Load the model by using load_system.

load_system('slvnvdemo_covfilt');

Create an S-Function selector by using slcoverage.SFcnSelector. To select the S-Function based
on its name, enter slcoverage.SFcnSelectorType.SFcnName as the first input. The second input
is the path to the S-Function.

sel = slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnName,...
 'slvnvdemo_covfilt/Mode Logic/ SFunction')

sel =

 SFcnSelector with properties:

 FileName: ''
 FunctionName: ''
 Expr: ''
 OutcomeIndex: []
 DecOrCondIndex: []
 Description: 'N/A'
 Type: SFcnName
 Id: 'slvnvdemo_covfilt/Mode Logic/ SFunction'
 ConstructorCode: 'slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnName, 'slvnvdemo_covfilt/Mode Logic/ SFunction')'

Create an S-Function Outcome Selector

This example shows how to create a selector for an S-Function using the
slcoverage.SFcnSelector class.

In this example, your model has an S-Function named RejectDoublePress_sfun. Inside the S-
Function, suppose that the condition rtb_AccelResSwOUT is never false, and you want to justify this
false outcome in the coverage report.

3 Classes

3-30

Load the model.

modelName = 'ex_cc_cruise_control_doublepress_sfun';
load_system(modelName)

Configure coverage settings using a Simulink.SimulationInput object.

covSet = Simulink.SimulationInput(modelName);
covSet = covSet.setModelParameter('CovEnable','on');
covSet = covSet.setModelParameter('CovMetricStructuralLevel','ConditionDecision');
covSet = covSet.setModelParameter('CovSFcnEnable','on');
covSet = covSet.setModelParameter('CovSaveSingleToWorkspaceVar','on');
covSet = covSet.setModelParameter('CovSaveName','covData');
covSet = covSet.setModelParameter('SimAnalyzeCustomCode','on');

Simulate the model using covSet as the input.

simOut = sim(covSet);
covData = simOut.covData;

Generating 'RejectDoublePress_sfun.c'Please wait
 ### 'RejectDoublePress_sfun.c' created successfully ### 'RejectDoublePress_sfun_wrapper.c' created successfully ### 'RejectDoublePress_sfun.tlc' created successfully
Building S-function 'RejectDoublePress_sfun.c' for ex_cc_cruise_control_doublepress_sfun/RejectDoublePress
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex97019589 -I\ -I\ C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe97cdf6f_1622_444c_bed5_58c7f88823aa\tp51019801_d7cf_487a_8b5b_2b743b7e8c54.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe97cdf6f_1622_444c_bed5_58c7f88823aa\tp527cd00c_d6db_477e_987a_b5659ad01799.c B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output RejectDoublePress_sfun
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex97019589 -I\ -I\ C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe97cdf6f_1622_444c_bed5_58c7f88823aa\RejectDoublePress_sfun.c RejectDoublePress_sfun_wrapper.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe97cdf6f_1622_444c_bed5_58c7f88823aa\tp8cf19f4b_b242_4a94_8082_36de46b1fbea.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpe97cdf6f_1622_444c_bed5_58c7f88823aa\tp1e8da56d_b407_4239_b658_cc26cdaa9b31.c B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output RejectDoublePress_sfun
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

Create a selector object for the outcome missing coverage by using the slcoverage.SFcnSelector
class. To select a condition outcome inside an S-Function, use the
SFcnInstanceCppConditionOutcome enumeration as the first input. The second input is the block
ID or block path to the S-Function. The third input is the file name of the source file that contains the
expression, RejectDoublePress_sfun_wrapper.c. The fourth input is the name of the function
that contains the condition, RejectDoublePress_sfun_Outputs_wrapper. The fifth input is the

 slcoverage.SFcnSelector class

3-31

expression which owns the outcome, which is rtb_AccelResSwOUT && CoastSetSwIn[0],
because this parent decision owns the condition rtb_AccelResSwOUT.

The sixth input is the index of the expression that owns the outcome relative to its parent, and
because rtb_AccelResSwOUT is the first condition in its parent decision, this input is 1. The seventh
input is the outcome index, which is 1 because this is the F case of a Boolean expression. The final
input is the index of the parent expression relative to the function, and because
rtb_AccelResSwOUT && CoastSetSwIn[0] is the second decision in the function, this input is 2.

enum = slcoverage.SFcnSelectorType.SFcnInstanceCppConditionOutcome;
SFunID = Simulink.ID.getSID([modelName, '/RejectDoublePress']);
sel = slcoverage.SFcnSelector(enum,SFunID,'RejectDoublePress_sfun_wrapper.c',...
 'RejectDoublePress_sfun_Outputs_wrapper','rtb_AccelResSwOUT && CoastSetSwIn[0]',1,1,2);

Create a Filter object and a rule based on the selector, then add the rule to the filter.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(sel,'Tested elsewhere',...
 slcoverage.FilterMode.Justify);
addRule(filt,rule);
setFilterName(filt,'S-Function Filter')

Save the filter as sfunfilter and add it to the cvdata object for my_func.c by setting the filter
property to the filter file name.

save(filt,'sfunfilter');
covData.filter = 'sfunfilter';

Generate a coverage report.

cvhtml('codeCovReport',covData)

Review the report. Click the RejectDoublePress_sfun link under S-Function Code Coverage
Results to see the filtered outcome under Objects Filtered from Coverage Analysis.

See Also
getSimulinkBlockHandle | cv.cvdatagroup | slcoverage.Filter |
slcoverage.FilterRule | slcoverage.MetricSelector | slcoverage.BlockSelector

Topics
“Top-Level Model Coverage Report”
“Simulink Identifiers”
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

3 Classes

3-32

addRule
Class: slcoverage.Filter
Package: slcoverage

Add coverage filtering rule to filter

Syntax
result = addRule(filter,rule)

Description
result = addRule(filter,rule) adds the filter rule to the specified filter.

Input Arguments
filter — Filter object to add the rule to
slcoverage.Filter object

Filter object to add the rule to, specified as an slcoverage.Filter object.

rule — Rule to add to the filter
slcoverage.FilterRule object

Rule to add to the filter, specified as an slcoverage.FilterRule object.

Output Arguments
result — Rule addition result
logical

Rule addition result, returned as 0 or 1.

Examples

Add Rule to Filter Object

Create a block selector, a filter, and a rule for the selector. Then add the rule to the filter.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'slcoverage_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricStructuralLevel','MCDC','RecordCoverage','on');

Create a BlockSelector object, bl. This block selector selects all blocks in the model with the
property 'RelationalOperator'.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');

 addRule

3-33

Create a filter object, create a rule object, and add the rule to the filter object.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

See Also
slcoverage.Filter | slcoverage.FilterRule | slcoverage.MetricSelector |
slcoverage.BlockSelector | slcoverage.SFcnSelector | removeRule

Introduced in R2017b

3 Classes

3-34

removeRule
Class: slcoverage.Filter
Package: slcoverage

Remove rule from filter rule set

Syntax
result = removeRule(filter,rule)

Description
result = removeRule(filter,rule) removes the filter rule from the specified filter.

Input Arguments
filter — Filter object to remove rule from
slcoverage.Filter object

Filter object to remove the rule from, specified as an slcoverage.Filter object.

rule — Rule to remove from the filter
slcoverage.FilterRule object

Rule to remove from the filter, specified as an slcoverage.FilterRule object.

Output Arguments
result — Rule removal result
logical

Rule removal result, returned as 0 or 1.

Examples

Remove Rules from Filter Objects

Create a block selector, a filter, and a rule for the selector. Add rules to the filter. Then, remove a rule
from a filter.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'slcoverage_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricStructuralLevel','MCDC','RecordCoverage','on');

Create two BlockSelector objects, bl and bl1.

 removeRule

3-35

bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');
id = Simulink.ID.getSID('slcoverage_lct_bus/slCounter/And');
bl1 = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);

Create a filter object, create two rule objects, and add each rule to the filter object.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
rule1 = slcoverage.FilterRule(bl1,'Value is never greater than 0');
filt.addRule(rule);
filt.addRule(rule1);

Review the rules. Look the first rule in the array.

fi = filt.rules
fi(1)

fi =

 1×2 FilterRule array with properties:

 Selector
 Mode
 Rationale

ans =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]
 Mode: Exclude
 Rationale: 'Tested elsewhere'

Remove the first rule that you added. Then review the rules to see that the first rule that you added is
removed.

filt.removeRule(rule);
fi = filt.rules

fi =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]
 Mode: Justify
 Rationale: 'Value is never greater than 0'

See Also
rules | slcoverage.Filter | addRule | slcoverage.FilterRule

Introduced in R2017b

3 Classes

3-36

rules
Class: slcoverage.Filter
Package: slcoverage

Rules for filter

Syntax
fr = rules(filter)
fr = rules(filter,element)

Description
fr = rules(filter) returns all the rules assigned to the filter.

fr = rules(filter,element) returns only the rules for the specified model element.

Input Arguments
filter — Filter object whose rules to return
slcoverage.Filter object

Filter object whose rules to return, specified as an slcoverage.Filter object.

element — Element identifier
Simulink ID | property | handle

This property is read-only.

Identifier of the model element whose rules to return, specified as a character vector or string of the
Simulink ID, model element property, or handle.

Output Arguments
fr — Filter rules
slcoverage.FilterRule object | array of slcoverage.FilterRule objects

Filter rules, returned as an slcoverage.FilterRule object or an array of
slcoverage.FilterRule objects.

Examples

Get All Rules for Filter Object

Open a model. Specify coverage settings and turn on coverage recording.

modelName = 'slcoverage_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricStructuralLevel','MCDC','RecordCoverage','on');

 rules

3-37

Create a BlockSelector object, bl. Create a filter object, create a rule, and add the rule to the
filter.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

Create another rule and add it to the filter object.
id = Simulink.ID.getSID('slcoverage_lct_bus/slCounter/And');
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);
rule = slcoverage.FilterRule(bl,'Value is never greater than 0');
filt.addRule(rule);

Use rules to return the filter rules. View first rule in the array.

fi = filt.rules
fi(1)

fi =

 1×2 FilterRule array with properties:

 Selector
 Mode
 Rationale

ans =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]
 Mode: Exclude
 Rationale: 'Tested elsewhere'

Use rules to return the rule only for the And block.

filt.rules(id)

ans =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]
 Mode: Justify
 Rationale: 'Value is never greater than 0'

See Also
slcoverage.Filter | addRule | slcoverage.FilterRule | removeRule

Introduced in R2017b

3 Classes

3-38

allSelectors
Class: slcoverage.BlockSelector, slcoverage.CodeSelector, slcoverage.Selector,
slcoverage.MetricSelector, slcoverage.SFcnSelector
Package: slcoverage

Selectors for model or code element

Syntax
sel = slcoverage.Selector.allSelectors(element)
sel = slcoverage.BlockSelector.allSelectors(element)
sel = slcoverage.CodeSelector.allSelectors(element)
sel = slcoverage.CodeSelector.allSelectors(element,Name,Value)
sel = slcoverage.MetricSelector.allSelectors(element)
sel = slcoverage.SFcnSelector.allSelectors(element)
sel = slcoverage.Selector.allSelectors(element,Name,Value)

Description
sel = slcoverage.Selector.allSelectors(element) returns all the selectors for the model
element.

sel = slcoverage.BlockSelector.allSelectors(element) returns all the block selectors
for element.

sel = slcoverage.CodeSelector.allSelectors(element) returns all the custom C/C++
code selectors for element.

sel = slcoverage.CodeSelector.allSelectors(element,Name,Value) , where element is
a model and Name,Value specifies the simulation mode, returns all the custom C/C++ code selectors
for the model in the specified simulation mode.

sel = slcoverage.MetricSelector.allSelectors(element) returns all the metric selectors
for element.

sel = slcoverage.SFcnSelector.allSelectors(element) returns all the S-function
selectors for element.

sel = slcoverage.Selector.allSelectors(element,Name,Value) returns selectors for
element, with additional options specified by one or more Name,Value pair arguments.

Input Arguments
element — Model element to select
handle | Simulink ID

Model element to select, specified as a handle or the model element Simulink identifier.
Example: 'sldemo_lct_bus:18'

 allSelectors

3-39

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type',slcoverage.BlockSelectorType.BlockInstance,'Description','F
outcome'

Type — Selector type refinement
slcoverage.BlockSelectorType value | slcoverage.CodeSelectorType value |
slcoverage.MetricSelectorType value | slcoverage.SFcnSelectorType value

Selector type refinement specified as one of the
slcoverage.BlockSelectorTypeslcoverage.CodeSelectorType,
slcoverage.MetricSelectorType, or slcoverage.SFcnSelectorType values. Possible values:

• Block selector types:

• slcoverage.BlockSelectorType.BlockInstance — An instance of a block.
• slcoverage.BlockSelectorType.BlockType — All blocks of the specified block type.
• slcoverage.BlockSelectorType.Chart — A Stateflow chart.
• slcoverage.BlockSelectorType.MaskType — Blocks that use the specified mask type.
• slcoverage.BlockSelectorType.State — A Stateflow state.
• slcoverage.BlockSelectorType.StateAllContent — Stateflow state and its contents.
• slcoverage.BlockSelectorType.StateflowFunction — A Stateflow function.
• slcoverage.BlockSelectorType.Subsystem — A subsystem block.
• slcoverage.BlockSelectorType.SubsystemAllContent — A subsystem and its

contents.
• slcoverage.BlockSelectorType.TemporalEvent — A Stateflow temporal event.
• slcoverage.BlockSelectorType.Transition — A Stateflow transition.

• Code selector types:

• slcoverage.CodeSelectorType.File — A custom C or C++ code file name.
• slcoverage.CodeSelectorType.Function — A custom C or C++ code function name.
• slcoverage.CodeSelectorType.Decision — A custom C or C++ code decision.
• slcoverage.CodeSelectorType.Condition — A custom C or C++ code condition.
• slcoverage.CodeSelectorType.DecisionOutcome — A custom C or C++ code decision

outcome.
• slcoverage.CodeSelectorType.ConditionOutcome — A custom C or C++ code

condition outcome.
• slcoverage.CodeSelectorType.MCDCOutcome — A custom C or C++ code MCDC

outcome.
• slcoverage.CodeSelectorType.RelationalBoundaryOutcome — A custom C or C++

code relational boundary outcome.

• Metric selector types:

3 Classes

3-40

• slcoverage.MetricSelectorType.ConditionOutcome objects select condition metric
objective outcomes.

• slcoverage.MetricSelectorType.DecisionOutcome objects select decision metric
objective outcomes.

• slcoverage.MetricSelectorType.MCDCOutcome objects select MCDC metric objective
outcomes.

• slcoverage.MetricSelectorType.RelationalBoundaryOutcome objects select
outcome metrics related to relational boundary outcomes.

• slcoverage.MetricSelectorType.SaturationOverflowOutcome objects select
outcome metrics related to saturation on integer overflow outcomes.

• S-function selector types:

• slcoverage.SFcnSelectorType.SFcnName selects the specified S-function.
• slcoverage.SFcnSelectorType.SFcnInstanceCppFileName selects the coverage data in

the generated code file for this block.
• slcoverage.SFcnSelectorType.SFcnInstanceCppFunction selects a function.
• slcoverage.SFcnSelectorType.SFcnInstanceCppCondition selects a condition

outcome of the S-function block.
• slcoverage.SFcnSelectorType.SFcnInstanceCppDecision selects a decision outcome

of the S-function block.

Description — Description text to match
character vector or string

Description text to match for the selector that you want to return, specified as a character vector or
string. For example, if you want to return only the selectors that include the text F outcome in the
description, use this syntax:

s = slcoverage.Selector.allSelectors(id,'Description','F outcome')

SimulationMode — Simulation mode
character vector or string

Simulation mode to run when selecting code filters, entered as one of the following:

Object Specification Description
'normal' (default) Extract code selectors for custom code in normal

simulation, such as custom code called from a C Caller
block or a Stateflow chart.

'sil' Extract code selectors for code generated in
Simulation-in-the-Loop (SIL) mode and code selectors
for the top model code interface

'pil' Extract code selectors for code generated in Processor-
in-the-Loop (PIL) mode and code selectors for the top
model code interface

 allSelectors

3-41

Object Specification Description
'xil' If SIL-mode code exists, extract code selectors for code

generated in SIL mode and extract code selectors for
the top model code interface; otherwise, extract code
selectors for code generated in PIL mode and extract
code selectors for the top model code interface

'modelrefsil' Extract code selectors for the model reference code
interface in SIL mode

'modelrefpil' Extract code selectors for the model reference code
interface in PIL mode

'modelrefxil' If SIL-mode code exists, extract code selectors for the
model reference code interface in SIL mode, if the
model is in SIL mode; otherwise,extract code selectors
for the model reference code interface in PIL mode

Output Arguments
sel — Selectors for the model or code element
array of Selector objects

Selectors for the model or code element, returned as an array of Selector objects.

Examples

Get All Selectors

This example shows how to get all the selectors for an And block and then add a rule to justify or
exclude a selector. Metric selectors can only be justified.

Load the model and set coverage settings

modelName = 'slvnvdemo_covfilt';
load_system(modelName);
set_param(modelName,'CovEnable','on','CovMetricStructuralLevel','MCDC');

First, get the block handle for the And block.

id = getSimulinkBlockHandle([modelName,'/Saturation']);

Get the selectors using the block handle.

sel = slcoverage.Selector.allSelectors(id)

sel =

 1x10 heterogeneous Selector (BlockSelector, MetricSelector) array with properties:

 Description
 Type
 Id

3 Classes

3-42

 ConstructorCode

The block has ten selectors. You can index into each one to see their contents. In this example, you
want to justify the sixth selector.

sel(6)

ans =

 MetricSelector with properties:

 ObjectiveIndex: 2
 OutcomeIndex: 2
 Description: 'T outcome of input > upper limit in Saturate block "Saturation"'
 Type: DecisionOutcome
 Id: 'slvnvdemo_covfilt:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome, 'slvnvdemo_covfilt:5', 2, 2)'

Create a justify rule, then create a filter object and add the rule to it.

rule = slcoverage.FilterRule(sel(6),'Expected result');
filt = slcoverage.Filter;
filt.addRule(rule);

Save the filter and generate a coverage report.

filt.save('metrfilter');
csim = cvsim(modelName);
csim.filter = 'metrfilter';
cvhtml('cov',csim,'-sRT=0');

Get Selector by Type and Description

This example shows how to get a selector by type and description. In this example, you get all
selectors for the False outcomes of the And block whose type is ConditionOutcome.

Load the model into memory.

modelName = 'slcoverage_lct_bus';
load_system(modelName);
load slcoverage_lct_data.mat

The slcoverage_lct_bus model has an S-Function. Build the S-Function by using legacy_code.

def = legacy_code('initialize');
def.SFunctionName = 'slcoverage_sfun_counterbus';
def.OutputFcnSpec = 'void counterbusFcn(COUNTERBUS u1[1], int32 u2, COUNTERBUS y1[1], int32 y2[1])';
def.HeaderFiles = {'counterbus.h'};
def.SourceFiles = {'counterbus.c'};
def.Options.supportCoverage = true;
legacy_code('generate_for_sim', def);

Start Compiling slcoverage_sfun_counterbus

 allSelectors

3-43

mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex13162396 -c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp9a348a85_8f25_4146_845d_f397932a237f\counterbus.c -outdir C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp66bafc7a_a549_4690_8762_68685fc755b6
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex13162396 C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp9a348a85_8f25_4146_845d_f397932a237f\tpa1da09b4_d346_4197_945f_d2281b2cacb0.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp66bafc7a_a549_4690_8762_68685fc755b6\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output slcoverage_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex13162396 -c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex13162396\counterbus.c -outdir C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp66bafc7a_a549_4690_8762_68685fc755b6
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tpf9c986ce\ex13162396 C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp9a348a85_8f25_4146_845d_f397932a237f\slcoverage_sfun_counterbus.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp9a348a85_8f25_4146_845d_f397932a237f\tpfdf64425_4b00_40c6_a12b_0cc8614cd105.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp9a348a85_8f25_4146_845d_f397932a237f\tp2dc0aed1_b02a_40d4_b25b_88e05ab51f1e.c C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\9\tp66bafc7a_a549_4690_8762_68685fc755b6\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output slcoverage_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling slcoverage_sfun_counterbus
Exit

Get the false outcome condition selectors for the And block by searching for descriptions that include
F.

id = getSimulinkBlockHandle([modelName,'/slCounter/And']);
sel = slcoverage.Selector.allSelectors(id, ...
 'Type',slcoverage.MetricSelectorType.ConditionOutcome, ...
 'Description','F')

sel =

 1x2 MetricSelector array with properties:

 ObjectiveIndex
 OutcomeIndex
 Description
 Type
 Id
 ConstructorCode

Look at the constructor code for the two selectors that were returned.

sel.ConstructorCode

ans =

 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.ConditionOutcome, 'slcoverage_lct_bus:23', 1, 2)'

ans =

 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.ConditionOutcome, 'slcoverage_lct_bus:23', 2, 2)'

See Also
slcoverage.MetricSelector | slcoverage.BlockSelector | slcoverage.CodeSelector |
slcoverage.SFcnSelector | slcoverage.Selector

Introduced in R2017b

3 Classes

3-44

setFilterName
Class: slcoverage.Filter
Package: slcoverage

Set name of coverage filter object

Syntax
setFilterName(filterObj,filterName)

Description
setFilterName(filterObj,filterName) sets the name of the filter to the specified value.

Input Arguments
filterObj — Coverage filter
slcoverage.Filter object

Coverage filter, specified as an slcoverage.Filter object.
Data Types: slcoverage.Filter

filterName — Coverage filter name
character array | string array

Coverage filter name, specified as a character array or string array.
Data Types: char | string

Examples

Edit and View Coverage Filter Details

This example shows how to use the slcoverage.Filter methods to set and get filter names and
descriptions.

Create a new filter object by using the slcoverage.Filter class.

filt = slcoverage.Filter;

Set the filter name and description by using setFilterName and setFilterDescription,
respectively.

setFilterName(filt,'myCovFilter');
setFilterDescription(filt,'Justify missing coverage for unreachable outcomes');

Get the filter name and description by using filterName and filterDescription with the filter
object as the input.

 setFilterName

3-45

filtName = filterName(filt)
filtDescr = filterDescription(filt)

filtName =

 'myCovFilter'

filtDescr =

 'Justify missing coverage for unreachable outcomes'

Alternatives
You can also create, edit, and view filters in Simulink. See “Create, Edit, and View Coverage Filter
Rules” for more information.

See Also
slcoverage.Filter | addRule | removeRule | rules | filterName | setFilterDescription |
filterDescription | save

Topics
“Filter Coverage Results Using a Script”

Introduced in R2020a

3 Classes

3-46

filterName
Class: slcoverage.Filter
Package: slcoverage

Get name of coverage filter object

Syntax
filtName = filterName(filterObj)

Description
filtName = filterName(filterObj) returns the name of the specified coverage filter.

Input Arguments
filterObj — Coverage filter
slcoverage.Filter object

Coverage filter, specified as an slcoverage.Filter object.
Data Types: slcoverage.Filter

Output Arguments
filtName — Filter name
character array | string array

Filter name, returned as a character array or string array.
Data Types: char | string

Examples

Edit and View Coverage Filter Details

This example shows how to use the slcoverage.Filter methods to set and get filter names and
descriptions.

Create a new filter object by using the slcoverage.Filter class.

filt = slcoverage.Filter;

Set the filter name and description by using setFilterName and setFilterDescription,
respectively.

setFilterName(filt,'myCovFilter');
setFilterDescription(filt,'Justify missing coverage for unreachable outcomes');

 filterName

3-47

Get the filter name and description by using filterName and filterDescription with the filter
object as the input.

filtName = filterName(filt)
filtDescr = filterDescription(filt)

filtName =

 'myCovFilter'

filtDescr =

 'Justify missing coverage for unreachable outcomes'

Alternatives
You can also create, edit, and view filters in Simulink. See “Create, Edit, and View Coverage Filter
Rules” for more information.

See Also
slcoverage.Filter | addRule | removeRule | rules | setFilterName |
setFilterDescription | filterDescription | save

Topics
“Filter Coverage Results Using a Script”

Introduced in R2020a

3 Classes

3-48

setFilterDescription
Class: slcoverage.Filter
Package: slcoverage

Set description of coverage filter object

Syntax
setFilterDescription(filterObj,descr)

Description
setFilterDescription(filterObj,descr) sets the description of the filter to the specified
value.

Input Arguments
filterObj — Coverage filter
slcoverage.Filter object

Coverage filter, specified as an slcoverage.Filter object.
Data Types: slcoverage.Filter

descr — Coverage filter description
character array | string array

Coverage filter description, specified as a character array or string array.
Data Types: char | string

Examples

Edit and View Coverage Filter Details

This example shows how to use the slcoverage.Filter methods to set and get filter names and
descriptions.

Create a new filter object by using the slcoverage.Filter class.

filt = slcoverage.Filter;

Set the filter name and description by using setFilterName and setFilterDescription,
respectively.

setFilterName(filt,'myCovFilter');
setFilterDescription(filt,'Justify missing coverage for unreachable outcomes');

Get the filter name and description by using filterName and filterDescription with the filter
object as the input.

 setFilterDescription

3-49

filtName = filterName(filt)
filtDescr = filterDescription(filt)

filtName =

 'myCovFilter'

filtDescr =

 'Justify missing coverage for unreachable outcomes'

Alternatives
You can also create, edit, and view filters in Simulink. See “Create, Edit, and View Coverage Filter
Rules” for more information.

See Also
slcoverage.Filter | addRule | removeRule | rules | setFilterName | filterName |
filterDescription | save

Topics
“Filter Coverage Results Using a Script”

Introduced in R2020a

3 Classes

3-50

filterDescription
Class: slcoverage.Filter
Package: slcoverage

Get description of coverage filter object

Syntax
descr = filterDescription(filterObj)

Description
descr = filterDescription(filterObj) returns the description of the specified coverage
filter.

Input Arguments
filterObj — Coverage filter
slcoverage.Filter

Coverage filter, specified as an slcoverage.Filter object.
Data Types: slcoverage.Filter

Output Arguments
descr — Filter description
character array | string array

Filter description, returned as a character array or string array.
Data Types: char | string

Examples

Edit and View Coverage Filter Details

This example shows how to use the slcoverage.Filter methods to set and get filter names and
descriptions.

Create a new filter object by using the slcoverage.Filter class.

filt = slcoverage.Filter;

Set the filter name and description by using setFilterName and setFilterDescription,
respectively.

setFilterName(filt,'myCovFilter');
setFilterDescription(filt,'Justify missing coverage for unreachable outcomes');

 filterDescription

3-51

Get the filter name and description by using filterName and filterDescription with the filter
object as the input.

filtName = filterName(filt)
filtDescr = filterDescription(filt)

filtName =

 'myCovFilter'

filtDescr =

 'Justify missing coverage for unreachable outcomes'

Alternatives
You can also create, edit, and view filters in Simulink. See “Create, Edit, and View Coverage Filter
Rules” for more information.

See Also
slcoverage.Filter | addRule | removeRule | rules | setFilterName | filterName |
setFilterDescription | save

Topics
“Filter Coverage Results Using a Script”

Introduced in R2020a

3 Classes

3-52

save
Class: slcoverage.Filter
Package: slcoverage

Save coverage filter object to coverage filter file

Syntax
save(filterObj,fileName)

Description
save(filterObj,fileName) saves the specified filter object with the specified file name. The
generated file will have the .cvf extension.

Input Arguments
filterObj — Coverage filter
slcoverage.Filter object

Coverage filter, specified as an slcoverage.Filter object.
Data Types: slcoverage.Filter

fileName — File name
character array | string array

File name, specified as a character array or string array.
Data Types: char | string

Examples

Create and Save a Coverage Filter

Create a filter object by using the slcoverage.Filter class, then set the filter name to
myCovFilter using setFilterName.

filt = slcoverage.Filter;
setFilterName(filt,'myCovFilter')

Save the filter as myCovFilter.cvf by using save.

save(filt,'myCovFilter')

Alternatives
You can also create and save filters in Simulink. See “Create, Edit, and View Coverage Filter Rules”
for more information.

 save

3-53

See Also
slcoverage.Filter | addRule | removeRule | rules | setFilterName | filterName |
setFilterDescription | filterDescription

Topics
“Filter Coverage Results Using a Script”

Introduced in R2020a

3 Classes

3-54

cvdata
Access Simulink Coverage data in the MATLAB workspace

Description
cvdata objects store model coverage data.

Creation
A cvdata object is generated automatically when you simulate a model that has coverage enabled.
You can access the coverage data by using coverage functions. The cvdata object becomes invalid if
you close or modify its parent model.

Properties
dbVersion — Coverage data origin release
character array

This property is read-only.

Coverage data origin release, returned as a character array.
Data Types: char

id — Internal coverage data ID
scalar

This property is read-only.

Internal coverage data ID, returned as a scalar.
Data Types: double

type — Internal coverage data type
TEST_DATA | DERIVED_DATA

This property is read-only.

Internal coverage type, returned as either TEST_DATA for a single coverage simulation, or
DERIVED_DATA for aggregated or cumulative coverage data.
Data Types: char

test — Test data
cvtest object

This property is read-only.

Test data, returned as a cvtest object. This property describes the coverage configuration.
Data Types: cvtest

 cvdata

3-55

rootID — Internal root ID
scalar

This property is read-only.

Internal root ID, returned as a scalar.
Data Types: double

checksum — Coverage data checksum
struct

This property is read-only.

Coverage data checksum, returned as a structure. The checksum is based on the structure of the
model being analyzed. It can be used to determine if two cvdata objects would be compatible for
data aggregation.
Data Types: struct

modelinfo — Model information
struct

This property is read-only.

Model information, returned as a struct. This property contains metadata about the model analyzed
for coverage.

cvdata.modelinfo has the following fields:

Field Description Values
modelVersion Version of the model analyzed for

coverage.
character array containing
version number

creator Original creator of the model. System name or organization
name

lastModifiedDate Date and time the model was last
modified.

character array containing
date and time

defaultParameterBehavior Indicates the default parameter
behavior setting.

'Tunable' | 'Inlined'

blockReductionStatus Indicates whether Block
Reduction is enabled.

See “Block Reduction” for more
information.

'off' | 'on'

conditionallyExecuteInpu
ts

Conditional input execution
switch. A value of 1 is 'on', and a
value of 0 is 'off'.

1 | 0

3 Classes

3-56

Field Description Values
mdcdMode Definition used for modified

condition decision coverage
(MCDC) analysis. A value of 1
indicates the model used the
masking definition of MCDC and a
value of 0 indicates the model
used the unique-cause definition
of MCDC.

For more information, see
“Modified Condition and Decision
Coverage (MCDC) Definitions in
Simulink Coverage”.

1 | 0

analyzedModel Name of the analyzed model or
model object. If analysis is scoped
to a subsystem, Stateflow Chart,
or other model object, this is the
path to that model object.

character array

reducedBlocks List of blocks reduced by the
block reduction parameter, if it is
enabled and any blocks are
reduced.

character array

ownerModel Model that is or contains the
component under test. If you have
a block diagram harness, this is
the model that the harness tests.
If you have a subsystem harness,
this is the model that contains
that subsystem.

character array

ownerBlock If the model includes a subsystem
harness, this is the subsystem that
the harness is testing.

character array

harnessModel Harness model name. If you have
data aggregated from multiple
test runs, where each run used a
different harness with the same
ownerModel, this field shows Not
Unique.

character array

logicBlkShortcircuit Indicates whether the short-
circuiting option is enabled.

0 | 1

Data Types: struct

startTime — System time at simulation start
character array

System time at simulation start, returned as a character array.
Data Types: char

 cvdata

3-57

stopTime — System time at simulation stop
scalar

System time at simulation stop, returned as a character array.
Data Types: char

intervalStartTime — Coverage interval start time
scalar

Coverage interval start time, returned as a scalar. This value comes from the CovStartTime
parameter. For more information, see “Coverage interval start time” on page 2-15.
Data Types: double

intervalStopTime — Coverage interval start time
scalar

Coverage interval stop time, returned as a scalar. This value comes from the CovStopTime
parameter. For more information, see “Coverage interval stop time” on page 2-16.
Data Types: double

filter — Coverage filter file name
character array | cell array

Coverage filter file name, returned as a character array or a cell array of character arrays. This
property contains the coverage filter file name. If there is no coverage filter, this field is empty. You
can apply a coverage filter after simulation by assigning the name of a valid filter file to this property.
Data Types: char | cell

simMode — Simulation mode
character array

Simulation mode, returned as a character array. For more information, see “Simulation mode”.
Data Types: char

See Also
cvsim | cvhtml | cv.cvdatagroup

Introduced before R2006a

3 Classes

3-58

	Functions
	cv.cvdatagroup.allNames
	complexityinfo
	conditioninfo
	cv.cvdatagroup
	cv.cvdatagroup
	cv.cvdatagroup.allSimulationModes
	cvexit
	cvhtml
	cvload
	cvmodelview
	cvresults
	cvsave
	cvsim
	cvtest
	decisioninfo
	executioninfo
	cv.cvdatagroup.get
	cv.cvdatagroup.getAll
	extract
	getCoverageInfo
	mcdcinfo
	overflowsaturationinfo
	relationalboundaryinfo
	sigrangeinfo
	sigsizeinfo
	slvnvextract
	slvnvharnessopts
	slvnvlogsignals
	slvnvmakeharness
	slvnvmergedata
	slvnvmergeharness
	slvnvruncgvtest
	slvnvruntest
	slvnvruntestopts
	slwebview_cov
	tableinfo
	cv.cvdatagroup.name
	slcovmex

	Simulink Coverage Settings
	Coverage Settings
	Basic Coverage Settings
	Advanced Coverage Settings

	Classes
	slcoverage.BlockSelector
	slcoverage.CodeSelector
	slcoverage.Filter
	slcoverage.FilterRule
	slcoverage.MetricSelector
	slcoverage.Selector
	slcoverage.SFcnSelector
	addRule
	removeRule
	rules
	allSelectors
	slcoverage.Filter.setFilterName
	slcoverage.Filter.filterName
	slcoverage.Filter.setFilterDescription
	slcoverage.Filter.filterDescription
	slcoverage.Filter.save
	cvdata

